An improved approach for odd-arrangement structure with narrow transition band based on FRM
-
摘要:
为了解决数字信道化中窄过渡带滤波器组计算复杂度较高的问题,提出了一种采用频率响应屏蔽(FRM)的窄过渡带奇型排列非最大抽取滤波器组高效结构。在设计该结构的原型滤波器时,首先通过对原型滤波器进行插值得到FRM上支路的滤波器,然后将信号延时与插值后的滤波器相减得到位于下支路的互补滤波器,再利用屏蔽滤波器对插值产生的多余镜像进行屏蔽,最终得到所设计的FRM滤波器。对该改进结构进行了MATLAB仿真,仿真结果验证了该改进结构的正确性。与多相滤波器组结构相比,采用该结构可节省约80%的乘法器资源。由于该改进结构中将抽取提前,降低了系统采样率的限制条件,可以直接应用于高速采样系统中。
-
关键词:
- 窄过渡带 /
- 原型滤波器 /
- 频率响应屏蔽(FRM) /
- 滤波器组 /
- 屏蔽滤波器
Abstract:In order to solve the problem of high computation complexity of narrow transition band filter bank, an odd-arrangement non-maximally decimated efficient structure with narrow transition band filter bank based on frequency response masking (FRM) is proposed. Firstly, when the prototype filter of this structure is designed, the FRM filter of the upper arm is obtained through the interpolated prototype filter. Secondly, the complementary filter of the lower arm is obtained by the delay signal subtracted from the interpolated prototype filter. Then the masking filter is used to shield the mirror caused by the interpolated filter. Finally, the desired FRM filter is obtained. The improved structure is simulated by MATLAB, and the simulation results verify the correctness of this improved structure. This efficient structure saves 80% of the multiplier resources compared with the polyphase filter bank architecture. Because the decimation module is located at the front of this improved structure, the limited condition of the sampling rate of the system is reduced and it can be directly used in the high-speed sampling system.
-
表 1 输入信号参数设置
Table 1. Parameter setting of input signals
输入信号 载波频率/MHz 调制频率/MHz 理论输出信道编号 LFM1 70 -10~+10 3、4 AM1 140 1 5 LFM2 205 -15~+15 2 DSB1 285 0.7 6 LFM3 339 -19~+19 1 DSB2 400 0.8 7 AM2 440 2 0 -
[1] HARRIS F J, DICK C, RICE M.Digital receivers and transmi-tters using polyphase filter banks for wireless communication[J].IEEE Transactions on Microwave Theory and Techniques, 2003, 51(4):1395-1412. doi: 10.1109/TMTT.2003.809176 [2] BARROS A K, RUTKOWSKI T, LTAKURA F.Estimation of speech embedded in a reverberant and noisy environment by independent component analysis and wavelets[J].IEEE Transactions on Neural Networks, 2002, 13(4):888-893. doi: 10.1109/TNN.2002.1021889 [3] DO M N, VETTERLI M.The contourlet transform:An efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing, 2005, 14(12):2091-2106. doi: 10.1109/TIP.2005.859376 [4] HONG Y, LIAN Y. Continuous-time FIR filters based on frequency-response masking technique[C]//2015 IEEE International Conference on Digital Signal Processing. Piscataway, NJ: IEEE Press, 2015: 191-195. [5] ROMERO D E T. High-speed multiplierless frequency response masking(FRM) FIR filters with reduced usage of hardware resources[C]//2015 IEEE 58th International Midwest Symposium on Circuits and Systems. Piscataway, NJ: IEEE Press, 2015: 1-4. [6] LU W, HINAMOTO T.A unified approach to the design of interpolated and frequency-response-masking FIR filters[J].IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2016, 63(12):2257-2266. doi: 10.1109/TCSI.2016.2613880 [7] WEI Y, HUANG S G, MA X J.A novel approach to design low-cost two-stage frequency response masking filters[J].IEEE Transactions on Circuits and Systems, 2015, 62(10):982-986. [8] SHEN T, LIM Y C. Low complexity frequency-response masking filters using modified structure based on serial masking[C]//19th European Signal Processing Conference. Kessariani: EURASIP, 2011: 1400-1404. [9] 陈涛, 王莹, 刘勇.基于频率响应屏蔽的窄过渡带信道化接收机[J].吉林大学学报, 2015, 45(1):335-340. http://www.oalib.com/paper/4824859CHEN T, WANG Y, LIU Y.Digital channelized receiver with narrow transiton band based on FRM filter[J].Journal of Jilin University, 2015, 45(1):335-340(in Chinese). http://www.oalib.com/paper/4824859 [10] LI N, NOWROUZIAN B. Application of frequency-response masking technique to the design of a novel modified-DFT filter banks[C]//IEEE ISCAS, 2006: 3293-3296. [11] KUMAR A, SUNKARIA R K. Design of prototype filter using windowing and linear optimization technique for the non-uniform filter banks[C]//2013 International Conference on Recent Trends in Information Technology. Piscataway, NJ: IEEE Press, 2014: 352-358. [12] SUMEDH D, SMITHA K G, VINOD A P. A low complexity reconfigurable channel filter based on decimation, interpolation and frequency response masking[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE Press, 2013: 5583-5587. [13] 张文旭, 陈亚静, 陈涛, 等.基于FRM的偶型排列信道化改进结构[J].北京邮电大学学报, 2016, 39(3):27-33. http://cdmd.cnki.com.cn/Article/CDMD-10217-1011021324.htmZHANG W X, CHEN Y J, CHEN T, et al.Improved structure of even-arrangement channelized based on FRM[J].Journal of Beijing University of Posts and Telecommunications, 2016, 39(3):27-33(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-1011021324.htm [14] TSUI K M, CHAN S C, LIM Y C.Design of multiplet perfect reconstruction filter banks using frequency response masking technique[J]. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, 2008, 55(9):2707-2715. doi: 10.1109/TCSI.2008.920086 [15] BINDIYA T S, ELIAS E.Metaheuristic algorithms for the design of multiplier-less non-uniform filter banks based on frequency response masking[J].Soft Computing, 2014, 18(8):1529-1547. doi: 10.1007/s00500-013-1158-8 [16] DHABU S, VINOD A P.Design and FPGA implementation of reconfigurable linear phase digital filter with wide cutoff frequency range and narrow transition bandwidth[J].IEEE Tran-sactions on Circuits and Systems Ⅱ:Express Briefs, 2016, 63(2):181-185. doi: 10.1109/TCSII.2015.2483418