留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称因素对舰载机弹射起飞安全的影响

林佳铭 张轶 乐挺 王立新

林佳铭, 张轶, 乐挺, 等 . 非对称因素对舰载机弹射起飞安全的影响[J]. 北京航空航天大学学报, 2018, 44(2): 363-374. doi: 10.13700/j.bh.1001-5965.2017.0391
引用本文: 林佳铭, 张轶, 乐挺, 等 . 非对称因素对舰载机弹射起飞安全的影响[J]. 北京航空航天大学学报, 2018, 44(2): 363-374. doi: 10.13700/j.bh.1001-5965.2017.0391
LIN Jiaming, ZHANG Yi, YUE Ting, et al. Effect of asymmetric factors on carrier-based aircraft catapult launch safety[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 363-374. doi: 10.13700/j.bh.1001-5965.2017.0391(in Chinese)
Citation: LIN Jiaming, ZHANG Yi, YUE Ting, et al. Effect of asymmetric factors on carrier-based aircraft catapult launch safety[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 363-374. doi: 10.13700/j.bh.1001-5965.2017.0391(in Chinese)

非对称因素对舰载机弹射起飞安全的影响

doi: 10.13700/j.bh.1001-5965.2017.0391
详细信息
    作者简介:

    林佳铭  男, 博士研究生。主要研究方向:舰载机起降安全与控制

    张轶  男, 硕士研究生。主要研究方向:舰载机飞行动力学

    乐挺  男, 博士, 讲师。主要研究方向:飞行力学与飞行控制

    王立新  男, 教授, 博士生导师。主要研究方向:飞机设计、飞行动力学与控制、飞行安全等

    通讯作者:

    王立新, E-mail:wlx_c818@163.com

  • 中图分类号: V212.13

Effect of asymmetric factors on carrier-based aircraft catapult launch safety

More Information
  • 摘要:

    非对称因素会导致舰载机在弹射后出现横航向偏离,并影响其纵向起飞航迹。针对定位偏心、弹射道偏角、甲板横摇等3类扰动因素,开展了这些非对称因素对飞机弹射起飞特性影响规律的理论分析与仿真计算,掌握了飞机在甲板滑跑段的偏航运动特性以及离舰上升段的横航向偏离特性。基于弹射起飞后飞机航迹下沉量与滚转角2项安全性要求,通过仿真计算建立了安全甲板风(WOD)包线,结果表明:安全甲板风包线的下边界由最大航迹下沉量约束,左右边界由最大滚转角限制确定,上边界由最大海面风速决定;定位偏心、甲板横摇等非对称因素将显著缩小安全甲板风包线的风速和风向角范围。

     

  • 图 1  非对称弹射起飞仿真模型的结构框图

    Figure 1.  Structure block diagram for asymmetric catapult launch simulation model

    图 2  机轮参考点的受力分解

    Figure 2.  Forces and moments at wheel reference point

    图 3  起飞甲板坐标系

    Figure 3.  Coordinate system of takeoff deck

    图 4  典型弹射力-弹射冲程曲线

    Figure 4.  Typical curve of catapult force versus catapult stroke

    图 5  对称弹射起飞仿真

    Figure 5.  Simulation of symmetric catapult launch

    图 6  偏心弹射示意图

    Figure 6.  Schematic diagram of off-center position catapult

    图 7  偏航振荡频率与阻尼比随弹射冲程的变化关系

    Figure 7.  Yawing fluctuation frequency and damping ratio versus catapult stroke

    图 8  不同偏心距对弹射起飞的影响

    Figure 8.  Effect of different off-center positions on catapult launch

    图 9  弹射道偏角对弹射起飞的影响

    Figure 9.  Effect of catapult runway angle on catapult launch

    图 10  甲板横摇对弹射起飞的影响

    Figure 10.  Effect of deck roll on catapult launch

    图 11  不同海面风速下的作业甲板风范围

    Figure 11.  Operation WOD range at different sea wind speeds

    图 12  不同海面风速下安全甲板风包线

    Figure 12.  Safe WOD envelope at different sea wind speeds

    图 13  非对称因素对安全甲板风包线的影响

    Figure 13.  Effect of asymmetric factors on safe WOD envelope

    表  1  基本仿真工况参数取值

    Table  1.   Basic working condition parameters for simulation

    参数 数值
    质量/kg 17 064
    转动惯量Ixx/(kg·m2) 31 100
    转动惯量Iyy/(kg·m2) 242 865
    转动惯量Izz/(kg·m2) 263 029
    转动惯量Ixz/(kg·m2) -3 399
    起飞推力/kN 112.5
    航向/(°) 0(正北)
    风向/(°) 180(正北风)
    典型航速/kn 15
    典型风速/kn 10
    下载: 导出CSV

    表  2  不同弹射道偏角与海面风的组合条件

    Table  2.   Combined conditions of different catapult runway angles and sea wind

    工况 航速/
    (m·s-1)
    航向/
    (°)
    风速/
    (m·s-1)
    风向/
    (°)
    弹射道偏角/
    (°)
    工况1 10 0 0 0
    工况2 10 0 0 -8
    工况3 10 0 1.4 90 -8
    工况4 10 0 1.4 90 0
    下载: 导出CSV

    表  3  不同工况的弹射过程分析

    Table  3.   Catapult process analysis for different working conditions

    工况 弹射初始时刻(机舰相对速度为0 m/s) 弹射离舰时刻(机舰相对速度为60 m/s)
    甲板风风速 飞机空速 侧向受力分析 飞机空速 侧向受力分析 飞机地速 航迹变化趋势
    工况1  侧滑角0°,无侧力  侧滑角0°,无侧力 沿跑道方向离舰,爬升时无侧风影响
    工况2  侧滑角8°,机身受到向左的侧力  侧滑角1.1°,机身受到向左的侧力 向跑道右前方离舰,爬升时无侧风影响
    工况3  侧滑角0°,无侧力  侧滑角0°,无侧力 向跑道右前方离舰,爬升时有侧风影响
    工况4  侧滑角-8°,机身受到向右的侧力  侧滑角-1.1°,机身受到向右侧力 沿跑道前方离舰,爬升时有侧风影响
      注:飞机空速按式(21)计算获得。在弹射初始时刻,机舰相对速度为零,故飞机空速(虚线)等于甲板风风速(实线);在离舰时刻,机舰相对速度指向弹射道方向,故飞机空速(虚线)等于甲板风风速(短实线)与机舰相对速度(长实线)的矢量合成。
    下载: 导出CSV
  • [1] 聂宏, 房兴波, 魏小辉, 等.舰载飞机弹射起飞动力学研究进展[J].南京航空航天大学学报, 2013, 45(6):727-738. doi: 10.3969/j.issn.1005-2615.2013.06.001

    NIE H, FANG X B, WEI X H, et al.Overview of carrier-based aircraft catapult launch dynamics[J].Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(6):727-738(in Chinese). doi: 10.3969/j.issn.1005-2615.2013.06.001
    [2] 于浩, 聂宏.偏中心定位对弹射过程中飞机姿态的影响[J].北京航空航天大学学报, 2011, 37(1):10-14. http://bhxb.buaa.edu.cn/CN/abstract/abstract11851.shtml

    YU H, NIE H.Effect of off-center location on aircraft attitude during catapult launch[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1):10-14(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11851.shtml
    [3] 朱齐丹, 刘恒, 李晓琳.舰载机偏心情况下弹射起飞研究[J].飞行力学, 2016, 34(2):10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201602003.htm

    ZHU Q D, LIU H, LI X L.Research on carrier-based aircraft catapult launching in the case of different eccentricity[J].Flight Dynamics, 2016, 34(2):10-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201602003.htm
    [4] 王大海, 苏彬.舰面运动对弹射起飞特性的影响[J].飞行力学, 1994, 12(1):57-63. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fhlx401.008&dbname=CJFD&dbcode=CJFQ

    WANG D H, SU B.The deck motion effects on the catapult-assisted take-off characteristics of the carrier based airplane[J].Flight Dynamics, 1994, 12(1):57-63(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fhlx401.008&dbname=CJFD&dbcode=CJFQ
    [5] LUCAS C B. Catapult criteria for a carrier-based airplane: AD-702814[R]. Washington, D. C. : Defense Technical Information Center, 1968.
    [6] 刘星宇, 许东松, 王立新.舰载飞机弹射起飞时的机舰参数适配特性[J].航空学报, 2010, 31(1):102-108. http://www.doc88.com/p-4909738429033.html

    LIU X Y, XU D S, WANG L X.Match characteristics of aircraft-carrier parameters during catapult takeoff of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(1):102-108(in Chinese). http://www.doc88.com/p-4909738429033.html
    [7] 郭元江, 李会杰, 申功璋, 等.复杂环境下舰载机弹射起飞环境因素建模分析[J].北京航空航天大学学报, 2011, 37(7):877-881. http://bhxb.buaa.edu.cn/CN/abstract/abstract12026.shtml

    GUO Y J, LI H J, SHEN G Z, et al.Modeling and analyze of the environmental factors of carrier-based aircraft catapult launch in complex environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7):877-881(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12026.shtml
    [8] 严重中, 冯家波.舰载飞机弹射起飞上升段的自动控制飞行[J].南京航空航天大学学报, 1995, 27(4):431-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgykz201202004

    YAN C Z, FENG J B.Automatic control flight for a carrier-based airplane in climb phase during catapult launch[J].Journal of Nanjing University of Aeronautics and Astronautics, 1995, 27(4):431-438(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgykz201202004
    [9] WALLACE M M. F/A-18E/F catapult minimum end airspeed testing[D]. Knoxville: University of Tennessee, 2002: 85-88. http://www.openthesis.org/documents/catapult-minimum-end-airspeed-testing-34474.html
    [10] STEN C P. Evaluating fixed wing aircraft in the aircraft carrier environment: AD-A244869[R]. Washington, D. C. : Defense Technical Information Center, 1992.
    [11] KELLEY H J.Prediction of yawing stability characteristics of airplanes during catapulting[J].Journal of the Aeronautics Sciences, 1952(19):529-539. https://arc.aiaa.org/toc/jans/19/8
    [12] SMALL D B. Full scale tests of nose tow catapulting[C]//1st AIAA Annual Meeting. Reston: AIAA, 1964: 1-11. doi: 10.2514/6.1964-327
    [13] 于浩, 聂宏.舰载机偏中心定位弹射起飞弹射杆载荷分析[J].航空学报, 2010, 31(10):1953-1959. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkxb201010008

    YU H, NIE H.Launch bar load analysis of carrier-based aircraft during off-center catapult launch[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1953-1959(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkxb201010008
    [14] Naval Air Systems Command.NATOPS flight manual navy model F/A-18E/F 165533 and up aircraft[M].Washington, D.C.:Department of the Navy, 2008:Ⅲ-8-2.
    [15] WILKINSON C H, ROSCOE M F, VANDERVLIET G M. Determining fidelity standards for the shipboard launch and recovery task[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2001: 1-10. doi: 10.2514/6.2001-4062
    [16] 贺少华, 刘东岳, 谭大力, 等.载机舰船气流场相关研究综述[J].舰船科学与技术, 2014, 36(2):1-7. http://mall.cnki.net/magazine/Article/JCKX201402002.htm

    HE S H, LIU D Y, TAN D L, et al.A review of researches on ship airwakes[J].Ship Science and Technology, 2014, 36(2):1-7(in Chinese). http://mall.cnki.net/magazine/Article/JCKX201402002.htm
    [17] WANG W J, QU X J, GUO L L.Multi-agent based hierarchy simulation models of carrier-based aircraft catapult launch[J].Chinese Journal of Aeronautics, 2008, 23(3):223-231. https://www.sciencedirect.com/science/article/pii/S1000936108600291
    [18] ZHANG W, ZHANG Z, ZHU Q D.Dynamics model of carrier-based aircraft landing gears landed on dynamic deck[J].Chinese Journal of Aeronautics, 2009, 22(4):371-379. doi: 10.1016/S1000-9361(08)60113-2
    [19] CHAKRABORTY A, SEILER P, BALAS G J.Susceptibility of F/A-18 flight controllers to the falling-leaf mode:Linear analysis[J].Journal of Guidance, Control, and Dynamics, 2011, 34(1):57-71. doi: 10.2514/1.50674
    [20] NAPOLITANO M R, PARIS A C, SEANOR B A, et al. Estimation of the longitudinal aerodynamic parameters from flight data for the NASA F/A-18 HARV[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 1996: 469-478. doi: 10.2514/6.1996-3419
    [21] JOHNSON S A. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring: NASA TM-4240[R]. Washington, D. C. : NASA, 1990. http://www.researchgate.net/publication/24297014_A_simple_dynamic_engine_model_for_use_in_a_real-time_aircraft_simulation_with_thrust_vectoring
    [22] BUTTRILL C S, ARBUCKLE P D, HOFFLER K D. Simulation model of a twin-tail, high performance airplane: NASA TM-107601[R]. Washington, D. C. : NASA, 1992.
    [23] 刘海良, 王立新.基于数字虚拟飞行的民用飞机纵向地面操稳特性评估[J].航空学报, 2015, 36(5):1432-1441. http://industry.wanfangdata.com.cn/yj/Magazine?magazineId=hkxb&yearissue=2015_5

    LIU H L, WANG L X.Assessment of longitudinal ground stability and control for civil aircraft based on digital virtual flight testing method[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1432-1441(in Chinese). http://industry.wanfangdata.com.cn/yj/Magazine?magazineId=hkxb&yearissue=2015_5
    [24] 郭锁凤, 申功璋, 吴成富.先进飞行控制系统[M].北京:国防工业出版社, 2003:208.

    GUO S F, SHEN G Z, WU C F.Advanced flight control system[M].Beijing:National Defense Industry Press, 2003:208(in Chinese).
    [25] U. S. Department of the Navy. Catapulting and arresting gear forcing functions for aircraft structural design: MIL-STD-2066[S]. Melbourne: Engineering Specifications and Standards, 1981: 47-54.
    [26] SCHUST A P, YOUNG P N, SIMPSON W R. Automatic carrier landing system (ACLC) category Ⅲ certification manual: AD-A118181[R]. Washington, D. C. : Defense Technical Information Center, 1982. http://agris.fao.org/openagris/search.do?recordID=AV2012091979
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  15
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-09
  • 录用日期:  2017-08-31
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回
    常见问答