A high-precision attitude coordinated control method using MEMS thruster for pico- and nano-satellite
-
摘要:
针对低成本皮纳卫星实现高精度姿态控制问题,提出了一种飞轮与MEMS固体微推力器(SPM)阵列双模式执行机构联合控制方法。采用全局快速终端滑模控制律解决皮纳卫星受扰机动快速稳定的问题,并通过了Lyapunov稳定性证明。推导出能量最优切换模型,即分为飞轮单独控制、飞轮与固体微推力器联合控制以及固体微推力器单独控制3个区间,达到了高稳定精度和固体微推力器最低消耗的双重效果。同时利用蒙特卡罗法方法搜索实际力矩与指令力矩最接近的固体微推力器分配矩阵,以合理安排固体微推力器的点火顺序,使其消耗最少。通过计算机仿真计算表明,提出的飞轮与MEMS固体微推力器阵列双模式执行机构联合控制方法可以使低成本的皮纳卫星完成高精度的控制任务,姿态角精度为0.045 7°,姿态角速率精度为0.006 2(°)/s。
Abstract:To achieve high precision attitude control for the pico- and nano-satellite at low cost, this paper presents a coordinated control method of double actuators using flywheel and solid propellant microthruster (SPM) array. The global fast terminal sliding mode controller is adopted to solve the rapid maneuvering of disturbed pico- and nano-satellite, which is verified by the Lyapunov stability. Meantime, the energy optimal switching strategy is derived, namely, the three sections of individual flywheel control, flywheel and SPM array coordinated control and individual SPM array control. In this way, the dual effects of high attitude stability precision and global minimum consumption of SPM array are realized. In this paper, the Monte Carlo method is used to optimize the allocation matrix in order to arrange the ignition sequence reasonably and minimize the consumption of the SPM array. The results of numerical simulation show that the coordinated control method of double actuators enables the pico- and nano-satellite complete high precision attitude control tasks at low cost, the attitude angle precision is 0.045 7°, and the attitude angular rate precision is 0.006 2 (°)/s.
-
表 1 参数取值
Table 1. Parameter value
参数 数值 α0 0.8 β0 0.04 p0 7 q0 5 φ 0.8 γ 0.04 p 7 q 5 M/(N·m) 0.0001 T0/(N·m) 1.4×10-5 注:Jwheel为飞轮的转动惯量;[φ0 θ0 ψ0]为初始姿态角。 表 2 多组控制参数取值
Table 2. Values of multiple groups of control parameter
参数 第1组 第2组 第3组 第4组 第5组 α0 0.8 0.8 1 1 1 β0 0.04 0.04 0.02 0.02 0.02 p0 7 9 9 9 9 q0 5 7 7 7 7 φ 0.8 0.8 0.8 0.8 1 γ 0.04 0.04 0.04 0.04 0.02 p 7 7 7 9 9 q 5 5 5 7 7 表 3 各组参数下取不同K/M值时的固体微推力器消耗量
Table 3. Consumption of solid propellant microthruster with different groups of parameter and different K/M
K/M 第1组 第2组 第3组 第4组 第5组 0.2 230 226 203 208 197 0.4 164 156 148 154 130 0.5 158 148 134 146 126 0.6 168 158 166 154 134 0.8 248 238 224 224 212 1.0 308 322 310 326 296 -
[1] 赵炜渝, 白保存, 金仲和.皮纳卫星应用与特点分析[J].国际太空, 2013(8):36-40. http://www.cqvip.com/QK/70785X/201505/666539706.htmlZHAO W Y, BAI B C, JIN Z H.Analysis on application and characteristics of pico-and nano-satellite[J].Space International, 2013(8):36-40(in Chinese). http://www.cqvip.com/QK/70785X/201505/666539706.html [2] 林来兴.小卫星技术的发展和应用前景[J].中国航天, 2006(11):43-47. doi: 10.3969/j.issn.1672-9463.2006.11.017LIN L X.Development and application prospect of moonlet technology[J].Aerospace China, 2006(11):43-47(in Chinese). doi: 10.3969/j.issn.1672-9463.2006.11.017 [3] YANG C D, SUN Y P.Mixed H2/H∞, state-feedback design for microsatellite attitude control[J].Control Engineering Practice, 2002, 10(9):951-970. doi: 10.1016/S0967-0661(02)00049-7 [4] NEMATI H R, BAHRAMI M, EBRAHIMI B. Sliding mode control of a microsatellite attitude[C]//International Symposium on Systems and Control in Aeronautics and Astronautics. Pisca-taway, NJ: IEEE Press, 2010: 561-565. [5] MCDUFFIE J H, SHTESSEL Y B. A de-coupled sliding mode controller and observer for satellite attitude control[C]//Proceedings of the American Control Conference, 1997. Pisca-taway, NJ: IEEE Press, 1997: 564-565. [6] BANG H, LHO Y. Sliding mode control for spacecraft contain-ing rotating wheels[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2001: 1-8. [7] CHEON Y J.Sliding mode control for attitude tracking of thruster-controlled spacecraft[J].Transaction on Control Automation & Systems Engineering, 2002, 3(3):257-261. [8] QIAO J, GUO L.Antidisturbance fault tolerant control of attitude control systems for microsatellite with unknown input delay[J].Mathematical Problems in Engineering, 2013, 2013:804754. [9] BELLAR A, FELLAH M K, MOHAMMED M A S.A cold gas thruster microsatellite attitude control[J].Revue Roumaine des Sciences Techniques-Serie électrotechnique et énergétique, 2013, 58(4):395-404. [10] GRASSI M, PASTENA M.Minimum power optimum control of microsatellite attitude dynamics[J].Journal of Guidance, Control, and Dynamics, 2015, 23(5):798-804. [11] QUEEN E M, SILVERBERG L.Optimal control of a rigid body with dissimilar actuators[J].Journal of Guidance, Control, and Dynamics, 1971, 19(3):738-740. [12] HALL C, TSIOTRAS P, SHEN H.Tracking rigid body motion using thrusters and momentum wheels[J].Journal of the Astronautical Sciences, 2002, 50(3):311-323. [13] SUN Z W, GENG Y, XU G, et al.The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite[J].Acta Astronautica, 2004, 54(7):463-469. doi: 10.1016/S0094-5765(03)00223-6 [14] 孙兆伟, 杨旭, 杨涤.小卫星磁力矩器与反作用飞轮联合控制算法研究[J].控制理论与应用, 2002, 19(2):173-177. http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098335.htmSUN Z W, YANG X, YANG D.The combined control algorithm for magnetorquer and reaction wheel of small satellite[J].Control Theory and Application, 2002, 19(2):173-177(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098335.htm [15] 杨灵芝, 魏延明, 刘旭辉.MEMS固体微推力器阵列发展研究[J].空间控制技术与应用, 2016, 42(1):13-19. http://www.cqvip.com/QK/93093A/201601/667960347.htmlYANG L Z, WEI Y M, LIU X H.Development of MEMS solid micro thruster array[J].Aerospace Control and Application, 2016, 42(1):13-19(in Chinese). http://www.cqvip.com/QK/93093A/201601/667960347.html [16] CHENG Y, JIANG B, ZHANG X. A micro-satellite attitude system using sliding mode observer and sliding mode controller with perturbation estimation[C]//International Symposium on Systems and Control in Aerospace and Astronautics. Pisca-taway, NJ: IEEE Press, 2008: 1-4. [17] AHMED J, COPPOLA V T, BERNSTEIN D S. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification[C]//IEEE Conference on Decision and Control, 1997. Piscatway, NJ: IEEE Press, 1998: 2471-2476. [18] ZOU A M, KUMAR K D.Adaptive fuzzy fault-tolerant attitude control of spacecraft[J].Control Engineering Practice, 2011, 19(1):10-21. doi: 10.1016/j.conengprac.2010.08.005