留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩感知OFDM稀疏信道估计导频设计

肖沈阳 金志刚 苏毅珊 武晋

肖沈阳, 金志刚, 苏毅珊, 等 . 压缩感知OFDM稀疏信道估计导频设计[J]. 北京航空航天大学学报, 2018, 44(7): 1447-1453. doi: 10.13700/j.bh.1001-5965.2017.0501
引用本文: 肖沈阳, 金志刚, 苏毅珊, 等 . 压缩感知OFDM稀疏信道估计导频设计[J]. 北京航空航天大学学报, 2018, 44(7): 1447-1453. doi: 10.13700/j.bh.1001-5965.2017.0501
XIAO Shenyang, JIN Zhigang, SU Yishan, et al. Pilot design for compressed sensing based OFDM sparse channel estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1447-1453. doi: 10.13700/j.bh.1001-5965.2017.0501(in Chinese)
Citation: XIAO Shenyang, JIN Zhigang, SU Yishan, et al. Pilot design for compressed sensing based OFDM sparse channel estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1447-1453. doi: 10.13700/j.bh.1001-5965.2017.0501(in Chinese)

压缩感知OFDM稀疏信道估计导频设计

doi: 10.13700/j.bh.1001-5965.2017.0501
基金项目: 

国家自然科学基金 61571318

国家自然科学基金 61701335

国家自然科学基金 61571323

海南重点研发项目 ZDYF2016153

青海省自然科学基金 2015-ZJ-904

天津市科技兴海行动计划项目 KJXH 2013-14

详细信息
    作者简介:

    肖沈阳  男, 博士研究生。主要研究方向:信号处理

    苏毅珊  男, 博士, 讲师。主要研究方向:传感器网络、信号处理

    通讯作者:

    苏毅珊.E-mail:yishan.su@tju.edu.cn

  • 中图分类号: TN911

Pilot design for compressed sensing based OFDM sparse channel estimation

Funds: 

National Natural Science Foundation of China 61571318

National Natural Science Foundation of China 61701335

National Natural Science Foundation of China 61571323

Key Research Program of Hainan Province ZDYF2016153

Natural Science Foundation of Qinghai Province, China 2015-ZJ-904

the Ke Ji Xing Hai Xin Dong Program of Tianjin KJXH 2013-14

More Information
  • 摘要:

    为提高稀疏信道估计性能, 基于压缩感知(CS)理论, 研究了正交频分复用(OFDM)系统中的导频设计问题。由于已有方法不能准确衡量采样矩阵重建性能, 从而导致根据已有方法设计的导频具有较差的信道估计性能, 因此提出以互相关矩阵元素的立方和为准则准确评价采样矩阵的重建性能。针对OFDM系统信道估计导频设计为离散组合优化问题, 提出了一种并行完全树分组替换搜索算法用于搜索最优的导频。在算法的每次循环中, 先将导频索引集合分组, 再根据每一组替换的结果更新导频, 提出的方法扩大了导频搜索空间, 避免了导频搜索的局部最优问题。仿真结果表明, 提出的评价方法相比现有方法能够准确评价采样矩阵重建性能, 使用提出的准则设计的导频与现有互相关准则相比信道估计均方误差可减小约3 dB。同时, 所提出的导频搜索算法具有更快的收敛速度和最优的导频搜索性能。

     

  • 图 1  信道估计均方误差

    Figure 1.  Mean square error of channel estimation

    图 2  信道估计误码率

    Figure 2.  Bit error rate of channel estimation

    图 3  两分枝树收敛性能比较

    Figure 3.  Convergence performance comparison with parallel two-branch trees

  • [1] 郭文彬, 李春波, 雷迪, 等.基于联合稀疏模型的OFDM压缩感知信道估计[J].北京邮电大学学报, 2014, 37(3):1-6. https://www.wenkuxiazai.com/doc/d1b1d9890242a8956aece408-2.html

    GUO W B, LI C B, LEI D, et al.Joint sparse model based OFDM compressed sensing channel estimation[J].Journal of Beijing University of Posts and Telecommunications, 2014, 37(3):1-6(in Chinese). https://www.wenkuxiazai.com/doc/d1b1d9890242a8956aece408-2.html
    [2] HE X Y, SONG R F, ZHU W P.Pilot allocation for distributed compressed sensing based sparse channel estimation in MIMO-OFDM systems[J].IEEE Transactions on Vehicular Technology, 2016, 65(5):2990-3004. doi: 10.1109/TVT.2015.2441743
    [3] GAO Z, DAI L L, WANG Z C.Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems[J].Electronics Letters, 2014, 50(12):896-898. doi: 10.1049/el.2014.0985
    [4] DAI L L, WANG J T, WANG Z C, et al.Spectrum-and energy-efficient OFDM based on simultaneous multi-channel reconstruction[J].IEEE Transactions on Signal Processing, 2013, 61(23):6047-6059. doi: 10.1109/TSP.2013.2282920
    [5] TROPP J A.Greed is good:Algorithmic results for sparse approximation[J].IEEE Transactions on Information Theory, 2004, 50(10):2231-2242. doi: 10.1109/TIT.2004.834793
    [6] MOHAMMADIAN R, AMINI A, KHALAJ B H.Deterministic pilot design for sparse channel estimation in MISO/multi-user OFDM systems[J].IEEE Transactions on Wireless Communications, 2017, 16(1):129-140. http://dblp.uni-trier.de/db/journals/twc/twc16.html#MohammadianAK17
    [7] 何雪云, 宋荣方, 周克琴.基于压缩感知的OFDM稀疏信道估计导频图案设计[J].南京邮电大学学报(自然科学版), 2011, 31(5):7-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njydxyxb201105002

    HE X Y, SONG R F, ZHOU K Q.Design of pilot pattern for compressive sensing based sparse channel estimation in OFDM systems[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science), 2011, 31(5):7-11(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njydxyxb201105002
    [8] HE X Y, SONG R F, ZHU W P.Pilot allocation for sparse channel estimation in MIMO-OFDM systems[J].IEEE Transactions on Circuits & Systems Ⅱ Express Briefs, 2013, 60(9):612-616. http://ieeexplore.ieee.org/abstract/document/6555811
    [9] WANG H, GUO Q, ZHANG G X, et al.Pilot pattern optimization for sparse channel estimation in OFDM systems[J].IEEE Communications Letters, 2015, 19(7):1233-1236. doi: 10.1109/LCOMM.2015.2429717
    [10] QI C H, WU L N.A study of deterministic pilot allocation for sparse channel estimation in OFDM systems[J].IEEE Communications Letters, 2012, 16(5):742-744. doi: 10.1109/LCOMM.2012.032612.112553
    [11] QI C H, YUE G S, WU L N, et al.Pilot design schemes for sparse channel estimation in OFDM systems[J].IEEE Transactions on Vehicular Technology, 2015, 64(4):1493-1505. doi: 10.1109/TVT.2014.2331085
    [12] 胡健生, 宋祖勋, 张倩, 等.OFDM压缩感知信道估计中导频图案设计[J].北京理工大学学报, 2016, 36(11):1183-1187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njydxyxb201105002

    HU J S, SONG Z X, ZHANG Q, et al.The pilot pattern design for OFDM compressed sensing channel estimation[J].Transaction of Beijing Institute of Technology, 2016, 36(11):1183-1187(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njydxyxb201105002
    [13] ELAD M.Optimized projections for compressed sensing[J].IEEE Transactions on Signal Processing, 2007, 55(12):5695-5702. doi: 10.1109/TSP.2007.900760
    [14] HE X Y, SONG R F, ZHU W P.Optimal pilot pattern design for compressed sensing-based sparse channel estimation in OFDM systems[J].Circuits, Systems, and Signal Processing, 2012, 31(4):1379-1395. doi: 10.1007/s00034-011-9378-6
    [15] 刘浩强, 赵洪博, 冯文全.基于CS的正则化稀疏度变步长自适应匹配追踪算法[J].北京航空航天大学学报, 2017, 43(10):2109-2117. http://bhxb.buaa.edu.cn/CN/abstract/abstract14215.shtml

    LIU H Q, ZHAO H B, FENG W Q.Regularized sparsity variable step-size adaptive matching pursuit algorithm for compressed sensing[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10):2109-2117(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14215.shtml
    [16] CAI T T, WANG L.Orthogonal matching pursuit for sparse signal recovery with noise[J].IEEE Transactions on Information Theory, 2011, 57(7):4680-4688. doi: 10.1109/TIT.2011.2146090
  • 加载中
图(3)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  73
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-21
  • 录用日期:  2017-10-27
  • 网络出版日期:  2018-07-20

目录

    /

    返回文章
    返回
    常见问答