-
摘要:
为研究高超声速进气道的性能参数随飞行高度、来流湍流度及来流马赫数的变化规律,并考察其压缩面上的边界层转捩现象对进气道性能的影响,采用本课题组程序平台HGFS所发展的
γ -Re θ 转捩模型进行了一系列的数值模拟工作,并对相应的流动现象和机理进行分析。首先,利用进气道压缩面的简化模型对γ -Re θ 转捩模型经验关联公式的高超声速改进方法进行了验证;其次,以某型等熵压缩面的高超声速进气道为对象,研究了飞行高度、来流马赫数对边界层转捩位置等多个参数的影响。结果表明:随着飞行高度的增加,压缩面上边界层转捩位置延后,进气道总压恢复系数下降;与地表情况相比,在设计飞行高度转捩位置延后了约0.525 m,边界层厚度增加了约73%,总压恢复系数下降了约3.2%;来流湍流度变化0.5%量级可导致转捩位置移动0.2 m左右,但来流湍流度对总压恢复系数的影响则很小。Abstract:In order to study the variation of the performance parameters of a hypersonic air inlet with the flight height, free stream turbulence intensity and free stream Mach number, and the influence of the boundary layer transition on the compression surface on air inlet performance, a series of numerical simulations were conducted by using the
γ -Re θ transition model developed in a in-house HGFS and the flow phenomena and mechanisms were analyzed. Firstly, the improvedγ -Re θ transition model implemented in the HGFS code was verified using a simplified model of an air inlet compression surface. Secondly, a hypersonic air inlet with isentropic compression surface was studied the effect of flight height and Mach number on parameters such as the transition location. Main conclusions are as follows:with the increase of the flight height, transition location of the boundary layer moves downstream on the compression surface, and the total pressure recovery coefficient decreases. Compared with the ground surface state, at the design flight height, the transition location moves downstream for about 0.525 m, the boundary layer thickness increases by about 73%, and the total pressure recovery coefficient decreases by 3.2%. About 0.5% magnitude change of the inflow turbulence intensity will contribute to 0.2 m movement of the transition location. However, the influence of turbulence intensity on the total pressure recovery coefficient is quite small.-
Key words:
- hypersonic air inlet /
- transition model /
- flight height /
- turbulence intensity /
- numerical simulation
-
表 1 部分性能参数随飞行高度的变化
Table 1. Variation of some performance parameters with flight height
飞行高度/km 总压恢复系数 边界层厚度(相对值)/% 转捩位置/m 0 0.750 8.8 0.025 5 0.750 9.6 0.04 10 0.749 10.4 0.065 15 0.743 11.2 0.12 20 0.733 12.0 0.24 23 0.725 13.6 0.35 26 0.718 15.2 0.55 表 2 部分性能参数随来流湍流度的变化
Table 2. Variation of some performance parameters with free stream turbulence intensity
来流湍流度/% 总压恢复系数 转捩位置/m 0.5 0.705 0.7 1.0 0.703 0.55 1.5 0.700 0.35 1.75 0.699 0.25 2.5 0.697 0.1 表 3 部分性能参数随来流马赫数的变化
Table 3. Variation of some performance parameters with free stream Mach number
来流马赫数 总压恢复系数 转捩位置/m 4.2 0.721 0.18 4.5 0.729 0.26 5.0 0.741 0.34 5.5 0.746 0.64 6.0 0.704 0.64 6.5 0.617 0.64 7.0 0.523 0.64 -
[1] 黄伟, 罗世彬, 王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报, 2010, 31(5):1259-1265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhdd201405012HUANG W, LUO S B, WANG Z G.Key techniques and prospect of near-space hypersonic vehicle[J].Journal of Astronautics, 2010, 31(5):1259-1265(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhdd201405012 [2] 李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学, 2013: 1.LI Z F. An investigation on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013: 1(in Chinese). [3] 张玉伦, 王光学, 孟德虹, 等.γ-Reθ转捩模型的标定研究[J].空气动力学学报, 2011, 29(3):295-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201103006ZHANG Y L, WANG G X, MENG D H, et al.Calibration of γ-Reθ transition model[J].Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb201103006 [4] 许丁, 马晖扬.高超声速边界层工程转捩模式研究[J].中国科学院研究生院学报, 2009, 26(1):43-49. http://www.cqvip.com/QK/97442X/200901/29778023.htmlXU D, MA H Y.Engineering transition models for hypersonic boundary layer[J].Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(1):43-49(in Chinese). http://www.cqvip.com/QK/97442X/200901/29778023.html [5] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables:Part Ⅰ:Model formulation[J].Journal of Turbomachinery, 2006, 128(3):57-67. [6] LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables: Part Ⅱ: Test cases and industrial applications: GT-2004-53454[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: ASME, 2004, 4: 69-79. [7] MALAN P, SULUKSNA K, JUNTASARO E. Calibrating the γ-Reθ transition model for commercial CFD[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. Reston: AIAA, 2009. [8] 陈奕, 高正红.γ-Reθ转捩模型在绕翼型流动问题中的应用[J].空气动力学学报, 2009, 27(4):411-418. http://www.cqvip.com/qk/95593X/200904/31402959.htmlCHEN Y, GAO Z H.Application of γ-Reθ transition model to flows around airfoils[J].Acta Aerodynamica Sinica, 2009, 27(4):411-418(in Chinese). http://www.cqvip.com/qk/95593X/200904/31402959.html [9] 钟伟, 王同光.转捩对风力机翼型和叶片失速特性影响的数值模拟[J].空气动力学学报, 2011, 29(3):385-390. http://www.cqvip.com/QK/95593X/201103/38427698.htmlZHONG W, WANG T G.Numerical analysis of transition effect on stall performance of wind turbine airfoils and blades[J].Acta Aerodynamica Sinica, 2011, 29(3):385-390(in Chinese). http://www.cqvip.com/QK/95593X/201103/38427698.html [10] 郑赟, 李虹杨, 刘大响.γ-Reθ转捩模型在高超声速下的应用及分析[J].推进技术, 2014, 35(3):296-304. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201403003&dbname=CJFD&dbcode=CJFQZHENG Y, LI H Y, LIU D X.Application and analysis of γ-Reθ transition model in hypersonic flow[J].Journal of Propulsion Technology, 2014, 35(3):296-304(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201403003&dbname=CJFD&dbcode=CJFQ [11] 孔维萱, 阎超, 赵瑞.γ-Reθ模式应用于高速边界层转捩的研究[J].空气动力学学报, 2013, 31(1):120-126. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201301022&dbname=CJFD&dbcode=CJFQKONG W X, YAN C, ZHAO R.γ-Reθ model research for high-speed boundary layer transition[J].Acta Aerodynamica Sinica, 2013, 31(1):120-126(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201301022&dbname=CJFD&dbcode=CJFQ [12] BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows: AIAA-2012-3151[R]. Reston: AIAA, 2012. [13] CHENG G, NICHOLS R, NEROORKAR K, et al. Validation and assessment of turbulence transition models: AIAA-2009-1141[R]. Reston: AIAA, 2009. [14] 张毅锋, 雷净, 张益荣, 等.高超声速数值模拟平台转捩模型的标定[J].空气动力学学报, 2015, 33(1):42-47. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kqdlxxb2015010008ZHANG Y F, LEI J, ZHANG Y R, et al.Calibration of transition model for hypersonic numerical simulation platform[J].Acta Aerodynamica Sinica, 2015, 33(1):42-47(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kqdlxxb2015010008 [15] 张毅锋, 何琨, 张益荣, 等.Menter转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报, 2016, 37(4):397-402. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yhxb201604004ZHANG Y F, HE K, ZHANG Y R, et al.Improvement and validation of menter's transition model for hypersonic flow simulation[J].Journal of Astronautics, 2016, 37(4):397-402(in Chinese). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yhxb201604004 [16] ZHANG X D, GAO Z H.A numerical research on a compressibility-correlated langtry's transition model for double wedge boundary layer flows[J].Chinese Journal of Aeronautics, 2011, 24(3):249-257. doi: 10.1016/S1000-9361(11)60030-7 [17] YOU Y C, LUEDEKE H, EGGERS T, et al. Application of the γ-Reθ transition model in high speed flows[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. [18] 夏陈超, 姜婷婷, 郭中州, 等.压缩性修正对γ-Reθ转捩模型的影响研究[J].空气动力学学报, 2015, 33(5):603-609. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201505004&dbname=CJFD&dbcode=CJFQXIA C C, JIANG T T, GUO Z Z, et al.Effects of compressibility correction on γ-Reθ transition model[J].Acta Aerodynamica Sinica, 2015, 33(5):603-609(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kqdx201505004&dbname=CJFD&dbcode=CJFQ [19] 郑赟, 李虹杨.基于新的经验关联公式的γ-Reθ转捩模型在高超声速流动中的应用[J].推进技术, 2015, 36(6):839-845. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201506006&dbname=CJFD&dbcode=CJFQZHENG Y, LI H Y.Application of γ-Reθ transition model in hypersonic flow based on new correlation equation[J].Journal of Propulsion Technology, 2015, 36(6):839-845(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tjjs201506006&dbname=CJFD&dbcode=CJFQ [20] DENISSEN N A, YODER D A, GEORGIADIS N J. Implementation and validation of a laminar-to-turbulent transition model in the wind-us code: NASA/TM-2008-215451[R]. Washington, D. C. : NASA, 2008: 27. [21] RESHOTKO E.Is retheta/me a meaningful transition criterion [J].AIAA Journal, 2007, 45(7):1441-1443. doi: 10.2514/1.29952 [22] LANGTRY R B, MENTER F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal, 2009, 47(12):2894-2906. doi: 10.2514/1.42362 [23] 李虹杨, 郑赟.尾迹对涡轮叶栅边界层转捩的影响[J].推进技术, 2017, 38(3):532-538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200904021LI H Y, ZHENG Y.Effect of wake on boundary layer transition of turbine cascade[J].Journal of Propulsion Technology, 2017, 38(3):532-538(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200904021 [24] LI H Y, ZHENG Y. Effect of surface roughness on conjugate heat transfer of a turbine vane: GT-2016-56744[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016: V05AT13A012. [25] NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. [26] REINARTZ B, BALLMANN J. Computation of hypersonic double wedge shock/boundary layer interaction[C]//26th International Symposium on Shock Waves. Berlin: Springer, 2008: 1099-1104.