Acoustic emission source location for composite plate based on empirical wavelet transform
-
摘要:
声发射(AE)技术是一种无损检测方法,可以对飞行器中复合材料结构的动态缺陷进行监测。针对AE信号模态成分复杂以及复合材料各向异性导致源定位精度不高的问题,提出基于经验小波变换(EWT)的广义互相关(GCC)时差定位(TDOA)算法。通过EWT对传感器观测到的AE信号进行自适应的分解重构得到其主频模态,有效提高了各通道信号间的相关系数;通过多向波速测量实验对波速进行了多项式拟合;采用GCC法求取各通道信号的时差对AE源进行定位。在平台实验中以T800型碳纤维复合材料板为对象,以断铅信号为AE源对算法进行了验证,实验结果证明了算法的准确性和实用性。
-
关键词:
- 声发射(AE) /
- 源定位 /
- 复合材料 /
- 经验小波变换(EWT) /
- 互相关 /
- 时差定位(TDOA)
Abstract:Acoustic emission (AE) technique is a non-destructive damage test method. It can be used to monitor the dynamic defects of composite structures in aircraft. The complex components of AE signal and the anisotropy of composite materials lead to the low positioning accuracy of the source. A method of time difference of arrival (TDOA) based on empirical wavelet transform (EWT) and generalized cross-correlation (GCC) is proposed to improve the location accuracy of AE source. EWT is used to adaptively decompose and reconstruct the AE signals observed by sensors. The dominant frequency modes are obtained and the correlation coefficients between signals in each channel are effectively increased. The wave velocity is polynomial fitted by the multidirectional wave velocity measurement experiment. Then the AE source is located by using GCC method to estimate the time difference of each channel. Experiments are conducted on a T800 carbon fiber composite plate with the signal of lead break as simulating source. The experimental results show the accuracy and practicability of the proposed algorithm.
-
表 1 权值函数表达式及特性
Table 1. Expression and characteristics of weighted function
函数名称 表达式 特性 CC 1 相当于普通的互相关法 Roth 相当于Winener滤波,可以抑制噪声大的频带,但会展宽函数的峰 PHAT 当信号能量较小时分母趋于零,会增大误差,可在分母加入固定常数进行改进 SCOT 与Roth类似,综合考虑两通道信号的影响 注:G11(ω)与G22(ω)分别为通道1和2信号自功率谱密度,G12(ω)为通道1和2信号互功率谱密度。 表 2 各传播方向波速
Table 2. Wave velocities of different propagation directions
波速与纤维夹角/(°) 波速/(m·s-1) 0 2 473.3 15 2 421.6 30 2 352.1 45 2 264.2 60 2 159.1 75 2 066.7 90 1 949.8 -
[1] 袁梅, 鲍鹏宇, 付重, 等.飞机结构健康监测技术及传感器网络[J].航空制造技术, 2008, 22(13):44-48. https://www.polyu.edu.hk/web/sc/media/media_releases/index_id_6429.htmlYUAN M, BAO P Y, FU Z, et al.Aircraft structural health monitoring technology and sensor network[J].Measurement & Control Technology in Aerospace, 2008, 22(13):44-48(in Chinese). https://www.polyu.edu.hk/web/sc/media/media_releases/index_id_6429.html [2] GUKIN R, GREEN C J, VANGRATTANACHAI S, et al.On acoustic emission for failure investigation in CFRP:Pattern recognition and peak frequency analyses[J].Mechanical Systems & Signal Processing, 2011, 25(4):1393-1407. [3] DIRK A, ALEX C, STEVE W, et al.Acoustic emission source location on large plate-like structures using a local triangular sensor array[J].Mechanical Systems and Signal Processing, 2012, 30(7):91-102. [4] PEARSON M R, EATON M, FEATHERSTON C, et al.Improved acoustic emission source location during fatigue and impact events in metallic and composite structures[J].Structural Health Monitoring, 2017, 16(4):382-399. doi: 10.1177/1475921716672206 [5] 金中薇, 姜明顺, 隋青美, 等.基于广义互相关时延估计算法的声发射定位技术[J].传感技术学报, 2013, 26(11):1513-1518. doi: 10.3969/j.issn.1004-1699.2013.11.009JIN Z W, JIANG M S, SUI Q M, et al.Acoustic emission localization technique based on generalized cross-correlation time difference estimation algorithm[J].Chinese Journal of Sensors and Actuators, 2013, 26(11):1513-1518(in Chinese). doi: 10.3969/j.issn.1004-1699.2013.11.009 [6] 袁梅, 牛奔, 董韶鹏, 等.伪多源采样复域FastICA冲击定位算法[J].北京航空航天大学学报, 2016, 42(2):243-250. http://bhxb.buaa.edu.cn/CN/abstract/abstract13771.shtmlYUAN M, NIU B, DONG S P, et al.Pseudo-multi-source-sampling complex domain FastICA for impact location[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):243-250(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13771.shtml [7] 焦敬品, 何存富, 吴斌, 等.基于模态分析和小波变换的声发射源定位新算法研究[J].仪器仪表学报, 2005, 26(5):482-485. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y497498JIAO J P, HE C F, WU B, et al.A new acoustic emission source location technique based on wavelet transform and mode analysis[J].Chinese Journal of Scientific Instrument, 2005, 26(5):482-485(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y497498 [8] 马波, 陈健飞, 李标, 等.玻璃纤维复合材料板声发射信号传播特性[J].无损检测, 2017, 39(1):16-18. doi: 10.11973/wsjc201701004MA B, CHEN J F, LI B, et al.Acoustic emission signal propagation characteristics of glass fiber composite material plate[J].Non-destructive Testing, 2017, 39(1):16-18(in Chinese). doi: 10.11973/wsjc201701004 [9] JEROMES G.Empirical wavelet transform[J].IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010. doi: 10.1109/TSP.2013.2265222 [10] KONSTANIN D, DOMINIQUE Z.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3):531-544. doi: 10.1109/TSP.2013.2288675 [11] HUANG N, SHEN Z, LONG S R, et al.The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995. [12] 李志农, 朱明, 褚福磊, 等.基于经验小波变换的机械故障诊断方法研究[J].仪器仪表学报, 2014, 35(11):2423-2432. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201209011.htmLI Z N, ZHU M, CHU F L, et al.Mechanical fault diagnosis method based on empirical wavelet transform[J].Chinese Journal of Scientific Instrument, 2014, 35(11):2423-2432(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201209011.htm [13] CHEN J L, PAN J, LI Z P, et al.Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals[J].Renewable Energy, 2016, 89:80-92. doi: 10.1016/j.renene.2015.12.010 [14] JIANG Y, ZHU H, LI Z.A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator[J].Chaos, Solitons & Fractals, 2016, 89:8-19. [15] 王秋生, 陈璐, 袁海文, 等.基于经验小波变换的电晕电流降噪方法[J].电网技术, 2017, 41(2):670-676. http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200708002.htmWANG Q S, CHEN L, YUAN H W, et al.Corona current de-noising method based on empirical wavelet transform[J].Power System Technology, 2017, 41(2):670-676(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS200708002.htm [16] KUMAR R, SAINI I.Empirical wavelet transform based ECG signal compression[J].LETE Journal of Research, 2014, 60(6):423-431. [17] WILSON K W, DARRELL T.Learning a precedence effect-like weighting function for the generalized cross-correlation framework[J].IEEE Transactions on Audio Speech & Language Processing, 2006, 14(6):2156-2164.