-
摘要:
结合多资源负荷理论及信息认知加工理论,在注意-情境意识(A-SA)模型和注意资源分配SA模型基础上,提出了一种新的SA量化模型。该模型中,多资源负荷作用于低层次的注意感知,初期认知资源衰减结合情境激活后内在的高层次规则可用性匹配,最终输出为个体的SA水平。为验证模型可用性,采用15名被试在不同情境下开展飞行任务模拟,并结合主观的十维度情境意识测评技术(10-D SART)和客观的飞行绩效、情境意识全面测量技术(SAGAT)以及生理测量(心电、皮电及呼吸)进行实验测评。实验分析表明,模型计算的理论值变化趋势与实验结果显著相关,提出的SA量化模型对于指导驾驶舱人机界面设计和优化飞行任务分配具有一定的参考价值。
Abstract:Based on the attention-situation awareness (A-SA) model and the attention resource allocation situation awareness model, a new quantitative model of situation awareness was put forward, which considers the multi-resource load and information recognition theory. In this model, the multi-resource load was applied to the low-level attention perception. The individual's situational awareness was composed of the damping of initial cognitive resource and the inherent deep-level rule availability matching after the activation of situation. In order to verify the usability of the model, 15 subjects were selected to complete the simulated flight task in different situations, and the subjective 10-dimensional situational awareness rating technology (10-D SART) and objective flight performance, situational awareness global assessment technique (SAGAT), and physiological measurement (electrocardiogram, electrodermal activity and respiration) were combined to carry out the experimental test. The experimental analysis indicates that the trend of the theoretical value predicted by the model is significantly related to the experimental results. The proposed situation awareness quantitative model can give some reference to guide the design of man-machine interface in the cockpit and to optimize the flight task assignment.
-
Key words:
- situation awareness (SA) /
- multi-resource load /
- cognitive modeling /
- mental workload /
- interface design /
- ergonomic
-
表 1 不同飞行情境仪表重要度和信息期望
Table 1. Importance and information expectancy of instrument in various flight situations
重要度和信息期望 情境 俯仰 速度 高度 滚转 航向 重要度 情境1 0.87 0.07 0.47 0.13 0.27 情境2 0.47 0.07 0.87 0.13 0.27 情境3 0.20 0.07 0.20 0.80 0.53 信息期望 情境1 0.38 0.13 0.25 0.13 0.13 情境2 0.20 0.10 0.40 0.10 0.20 情境3 0.10 0.10 0.10 0.40 0.30 表 2 不同情境下飞行操作
Table 2. Flight operation in various situations
情境 操作要求 情境1 爬升至15 000 ft; 保持15°俯仰角, 保持航向298°, 滚转0° 情境2 巡航高度为15 000 ft; 保持航向298°, 滚转0° 情境3 航向由298°转为118°; 保持滚转左20°, 保持高度15 000 ft 注:1 ft=304.8 mm。 表 3 界面编码显示属性
Table 3. Display attributes of interface coding
显示属性 俯仰 空速 高度 滚转 航向 权重 字符大小 60.65 60.65 60.65 60.65 60.65 0.22 颜色匹配 29.15 29.15 29.15 29.15 29.15 0.23 布局位置 82.81 57.29 60.42 46.88 14.58 0.35 突显性 0 0 0 0 0 0.22 界面编码 48.41 39.57 40.66 35.97 24.78 表 4 高层次情境认知表征
Table 4. Deep-level situation cognition representation
情境 注意资源消耗之和Ai 平均负荷水平/min 平均持续时间/s 规则可用性 情境1 0.322 4 50.37 154 0.280 2 情境2 0.295 0 49.59 217 0.388 8 情境3 0.382 6 51.22 177 0.331 2 表 5 情境1各AOI注意资源计算
Table 5. Calculation of attention resource in each AOI under situation 1
注意资源元素 俯仰 空速 高度 滚转 航向 界面编码 0.255 6 0.209 0 0.214 7 0.189 9 0.130 9 注意转移 0.145 4 0.219 2 0.225 6 0.195 2 0.214 5 信息价值 0.123 9 0.005 6 0.059 2 0.012 4 0.029 0 信息期望 0.375 0 0.125 0 0.250 0 0.125 0 0.125 0 注意资源消耗Aj 1.250 2 0.015 2 0.305 4 0.041 9 0.129 2 表 6 SA预测值和主客观测量结果
Table 6. Predicted SA values combined with subjective and objective measurement results
测量指标 情境1 情境2 情境3 SA预测值 0.283 4 0.392 1 0.331 2 飞行绩效/10-2 0.384 9±0.256 8 0.532 4±0.385 1 0.454 4±0.314 8 SA反应时/ms 5 168.45±1 562.2 4 440.67±844.7 4 958.28±1 253.0 SA正确率/% 66.18±19.14 77.06±12.13 70.00±11.18 10-D SART得分 21.8±6.06 23.8±7.29 22.8±7.86 平均心率/(次·min-1) 93.77±14.03 90.09±13.34 90.23±12.55 SDNN/ms 47.77±28.04 50.09±22.88 48.84±29.40 呼吸率/(次·min-1) 21.11±3.29 20.76±3.25 20.28±3.36 EDA/μs 2.45±0.11 2.39±0.08 2.41±0.05 表 7 SA预测值和测量指标相关性分析
Table 7. Analysis of correlation between predicted SA values and measurement indices
相关系数和显著性值 10-D SART得分 飞行绩效 SA正确率 SA反应时 平均心率 SDNN 呼吸率 EDA r 0.998* 0.999* 0.995 -0.986 -0.848 1.000 -0.351 -0.978 P 0.044 0.023 0.064 0.108 0.356 0.015 0.772 0.134 -
[1] ENDSLEY M R.Toward a theory of situation awareness in dynamic systems[J].Human Factors the Journal of the Human Factors & Ergonomics Society, 1995, 37(1):32-64. https://ci.nii.ac.jp/naid/80008319019/ [2] STANTON N A, CHAMBERS P, PIGGOTT J.Situational awareness and safety[J].Safety Science, 2001, 39(3):189-204. doi: 10.1016/S0925-7535(01)00010-8 [3] SALMON P M. Distributed situation awareness: Advances in theory, measurement and application to team work[D]. London: Brunel University, 2008: 19-20. [4] ENDSLEY M R, GARLAND D J.Situation awareness analysis and measurement[M].Boca Raton:CRC Press, 2000:3-32. [5] 刘双. 飞行员情境意识建模及工效评价研究[D]. 北京: 北京航空航天大学, 2015: 10-17.LIU S. Modeling pilot situational awareness and evaluation of ergonomics[D]. Beijing: Beihang University, 2015: 10-17(in Chinese). [6] MCCARLEY J S, WICKENS C D, GOH J, et al. A computational model of attention/situation awareness[C]//Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Los Angeles: SAGE Publications, 2002, 46(17): 1669-1673. [7] WICKENS C D, MCCARLEY J S, ALEXANDER A L, et al. Attention-situation awareness (A-SA) model of pilot error: ARL-01-13/NASA-01-6[R]. Washington, D. C. : NASA, 2001. [8] HOGARTH R M, EINHORN H J.Order effects in belief updating:The belief-adjustment model[J].Cognitive Psychology, 1992, 24(1):1-55. doi: 10.1016/0010-0285(92)90002-J [9] HOOEY B L, GORE B F, WICKENS C D, et al. Modeling pilot situation awareness[M]//CACCIABUE P C, HJA·LMDAHL M, LVDTKE A, et al. Human modelling in assisted transportation. Berlin: Springer, 2011: 207-213. [10] 刘双, 完颜笑如, 庄达民, 等.基于注意资源分配的情境意识模型[J].北京航空航天大学学报, 2014, 40(8):1066-1072. http://bhxb.buaa.edu.cn/CN/abstract/abstract12997.shtmlLIU S, WANYAN X R, ZHUANG D M, et al.Situational awareness model based on attention allocation[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8):1066-1072(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12997.shtml [11] LIU S, WANYAN X R, ZHUANG D M.Modeling the situation awareness by the analysis of cognitive process[J].Bio-medical Materials and Engineering, 2014, 24(6):2311-2318. http://www.ncbi.nlm.nih.gov/pubmed/25226931 [12] 薛书骐, 张宜静, 王萌, 等.基于"认知预期"的情境意识预测模型[J].航天医学与医学工程, 2015, 28(2):102-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htyxyyxgc201502006XUE S Q, ZHANG Y J, WANG M, et al.A predictive model of situation awareness based on cognitive expectation[J].Space Medicine & Medical Engineering, 2015, 28(2):102-108(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htyxyyxgc201502006 [13] VIDULICH M A, TSANG P S. Mental workload and situation awareness[M]//SALVENDY G. Handbook of human factors and ergonomics. 4th ed. Hoboken: John Wiley & Sons, Inc., 2012: 243-273. [14] GALOTTI K M. 认知心理学: 认知科学与你的生活[M]. 吴国宏, 译. 北京: 机械工业出版社, 2016: 42-43.GALOTTI K M. Cognitive psychology in and out of the laboratory[M]. WU G H, translated. Beijing: China Machine Press, 2016: 42-43(in Chinese). [15] WICKENS C D.Multiple resources and mental workload[J].Human Factors, 2008, 50(3):449-455. doi: 10.1518/001872008X288394 [16] ANDERSON J R, BOTHELL D, BYRNE M D, et al.An integrated theory of the mind[J].Psychological Review, 2004, 111(4):1036. doi: 10.1037/0033-295X.111.4.1036 [17] 完颜笑如, 庄达民.飞行员脑力负荷测量与应用[M].北京:科学出版社, 2014:43-44.WANYAN X R, ZHUANG D M.Measurement and application of pilot mental workload[M].Beijing:Science Press, 2014:43-44(in Chinese). [18] WICKENS C D, HOLLANDS J G, SIMON B, et al. 工程心理学与人的作业[M]. 张侃, 孙向红, 译. 北京: 机械工业出版社, 2014: 126-127.WICKENS C D, JUSTIN G H, SIMON B, et al. Engineering psychology & human performance[M]. ZHANG K, SUN X H, translated. Beijing: China Machine Press, 2014: 126-127(in Chinese). [19] WICKENS C D, GOH J, HELLEBERG J, et al.Attentional models of multitask pilot performance using advanced display technology[J].Human Factors, 2003, 45(3):360-380. doi: 10.1518/hfes.45.3.360.27250 [20] WICKENS C D. Display formatting and situation awareness model (DFSAM): An approach to aviation display design: AHFD-05-14/NASA-05-5[R]. Washington, D. C. : NASA, 2005: 1-15. [21] 肖旭, 完颜笑如, 庄达民.显示界面多维视觉编码综合评价模型[J].北京航空航天大学学报, 2015, 41(6):1012-1018. http://bhxb.buaa.edu.cn/CN/abstract/abstract13283.shtmlXIAO X, WANYAN X R, ZHUANG D M.Comprehensive evaluation model of multidimensional visual coding on display interface[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1012-1018(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13283.shtml [22] STEELMAN K S, MCCARLEY J S, WICKENS C D.Theory-based models of attention in visual workspaces[J].International Journal of Human-Computer Interaction, 2017, 33(1):35-43. doi: 10.1080/10447318.2016.1232228 [23] 吴旭, 完颜笑如, 庄达民.多因素条件下注意力分配建模[J].北京航空航天大学学报, 2013, 39(8):1086-1090. http://bhxb.buaa.edu.cn/CN/abstract/abstract12703.shtmlWU X, WANYAN X R, ZHUANG D M.Attention allocation modeling under multi-factor condition[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8):1086-1090(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12703.shtml [24] WANYAN X R, ZHUANG D M, WEI H Y, et al.Study on pilot attention allocation model based on fuzzy theory[J].Computers & Mathematics with Applications, 2011, 62(7):2727-2735. http://ieeexplore.ieee.org/abstract/document/5584308 [25] COLLINS A M, LOFTUS E F.A spreading-activation theory of semantic processing[J].Readings in Cognitive Science, 1988, 82(6):126-136. http://content.apa.org/journals/rev/82/6/407 [26] FAA. Airworthiness standards: Transport category airplanes: CFR Part25[S]. Washington, D. C. : FAA, 2013: 194-195. [27] 周颖伟, 庄达民, 吴旭, 等.显示界面字符编码工效设计与分析[J].北京航空航天大学学报, 2013, 39(6):761-765. http://bhxb.buaa.edu.cn/CN/abstract/abstract12642.shtmlZHOU Y W, ZHUANG D M, WU X, et al.Ergonomic design and analysis of character coding on display interface[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6):761-765(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12642.shtml [28] 白杰, 冯传宴, 杨坤.飞行员脑力负荷生理测量方法研究进展[J].航天医学与医学工程, 2016, 29(2):150-156. http://d.old.wanfangdata.com.cn/Periodical/htyxyyxgc201602013BAI J, FENG C Y, YANG K.Research progress of physiological measurement of mental workload in pilots[J].Space Medicine & Medical Engineering, 2016, 29(2):150-156(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/htyxyyxgc201602013 [29] WEI Z M, ZHUANG D M, WANYAN X R, et al.A model for discrimination and prediction of mental workload of aircraft cockpit display interface[J].Chinese Journal of Aeronautics, 2014, 27(5):1070-1077. doi: 10.1016/j.cja.2014.09.002 [30] VIDULICH M A, TSANG P S.The confluence of situation awareness and mental workload for adaptable human-machine systems[J].Journal of Cognitive Engineering and Decision Making, 2015, 9(1):95-97. doi: 10.1177/1555343414554805