-
摘要:
利用复合材料可设计性强和树脂基体轻量化的特点,并解耦“材料-结构-性能”之间的相互关联,是汽车复合材料结构件设计的难点。螺旋弹簧是汽车悬架系统的主要承载部件,工况复杂,一般采用性能极佳的弹簧钢;若用轻质复合材料替代,必须兼顾安全性与轻量化,设计难度很大。针对上述问题,提出了一种复合材料螺旋弹簧“材料-结构-性能”集成设计方法。依据弹簧受压缩载荷时,簧丝截面应力分布,确定选择±45°铺层的碳纤维复合材料(CFRP);在满足刚度、强度和安装空间约束条件下,根据复合材料力学和弹簧刚度、强度理论模型,确定初始弹簧几何参数;再进一步利用有限元数值仿真进行校验;将正交实验设计法和有限元数值模拟结合,建立轴向压缩刚度和强度随几何参数变化的响应面模型;采用遗传算法获得满足弹簧性能要求下轻量化效果最佳的设计结果。优化后的复合材料弹簧方案比金属弹簧质量减轻34.4%,为复合材料汽车结构件设计提供了可行的整体解决方案和产品开发实例。
Abstract:A major problem in designing automotive structures is how to make full use of the flexible designability of composites and light weight of polymer matrix, and also consider the close connection among the material, structure and properties. Since the helical spring is one of the major load-bearing parts of suspension and subjected to complex loads, it is generally manufactured by spring steel with ultra-high performance. If replaced by lightweight composites, both safety and light weight should be satisfied, which makes the design of composite helical spring rather difficult. In this paper, an integrated materials-structure-performance design method of composite helical spring is proposed. According to the stress distribution on the cross section of spring under compression, carbon fiber reinforce polymer (CFRP) material with ±45° ply sequence is selected. Under the constraint conditions of stiffness, strength and installation space, the initial geometric parameters of helical spring are derived by analytical models based on spring stiffness and strength and composite material mechanics. Furthermore, the initial result is verified numerically by finite element simulation. Combining the design of orthogonal experiment with numerical simulation, the response surface model of stiffness and strength of helical spring to its geometric parameters is established. Finally, the optimal design of helical spring satisfying both required performance and weight reduction is obtained by genetic optimization algorithm. Compared with the metal helical spring, the CFRP one reduces the mass by 34.4%. As a representative product development case, it has demonstrated that the proposed method is a feasible integrated solution for design of automotive structural components with composite materials.
-
Key words:
- automotive light weight /
- finite element method /
- composite /
- helical spring /
- response surface model /
- optimal design
-
参 数 E1/GPa E2/GPa G12/GPa ν12 XT/MPa XC/MPa YT/MPa YC/MPa S12/MPa 数 值 115.142 6.894 12.41 0.332 1 447 1 172 6.89 262 279 表 2 弹簧几何参数的理论设计初值
Table 2. Theoretically designed initial value of spring geometric parameters
参 数 簧丝直径/mm 弹簧中径/mm 弹簧有效圈数 数 值 21.2 123.5 5.4 失效模式 失效准则 纤维拉伸断裂(σ11≥0) 纤维压缩断裂(σ11 < 0) 基体拉伸断裂(σ22≥0) 基体压缩断裂(σ22 < 0) 表 4 弹簧几何结构正交实验样本及仿真结果
Table 4. Orthogonal experimental samples and their simulation results of spring geometric structure
d/mm D/mm n κ S 19.27 120 5.2 64.94 1.18 20.83 121.06 6 84.29 1.33 19.66 122.11 4.93 66.37 1.22 20.05 123.17 5.87 71.53 1.26 20.44 124.23 4.13 68.57 1.27 20.25 125.28 4.53 72.13 1.29 19.08 126.34 5.47 61.8 1.31 19.86 127.4 4.8 55.5 1.14 21.03 128.45 4.67 74.13 1.38 21.22 129.51 5.33 75.59 1.39 20.64 130.57 5.07 80.87 1.38 21.81 131.62 5.73 66.42 1.29 22 132.68 5.6 81.3 1.40 21.42 133.74 4.27 70.64 1.35 19.47 134.79 4.4 48 1.29 21.61 135.85 4 69.81 1.41 表 5 金属弹簧及优化前后复合材料弹簧性能比较
Table 5. Performance comparison of metal spring and composite spring before and after optimization
弹簧 W/kg κ/(N·mm-1) S d/mm D/mm n 金属弹簧 5.23 75 2.74 16.4 142.1 7.3 初始理论设计复合材料弹簧 3.74 73.2 1.38 21.2 123.5 5.4 有限元优化后的复合材料弹簧 3.43 75 1.33 19.1 121.4 5.0 表 6 优化结果误差分析
Table 6. Error analysis of optimized results
约束参数 优化结果 优化结构的数值仿真 误差/% κ 75 72.7 3.1 τsmax 270.3 276.4 2.2 -
[1] 张靠民, 李敏, 顾轶卓, 等.先进复合材料从飞机转向汽车应用的关键技术[J].中国材料进展, 2013, 32(11):685-695. https://wuxizazhi.cnki.net/qikan-SHSL201702001.htmlZHANG K M, LI M, GU Y Z, et al.Key technology of advanced composite materials from aircraft to automobile[J].Materials China, 2013, 32(11):685-695(in Chinese). https://wuxizazhi.cnki.net/qikan-SHSL201702001.html [2] BUDAN D A, MANJUNATHA T S.Investigation on the feasibility of composite coil spring for automotive applications[J].World Academy of Science Engineering & Technology, 2010, 4(10):1035-1039. https://www.researchgate.net/publication/286556840_Investigation_on_the_feasibility_of_composite_coil_spring_for_automotive_applications [3] CHOI B L, CHOI B H.Numerical method for optimizing design variables of carbon-fiber-reinforced epoxy composite coil springs[J].Composites Part B Engineering, 2015, 82:42-49. doi: 10.1016/j.compositesb.2015.08.005 [4] SEQUEIRA A A, SINGH R K, SHETTI G K.Comparative analysis of helical steel springs with composite springs using finite element method[J].Journal of Mechanical Engineering and Automation, 2016, 6(5A):63-70. doi: 10.5923.c.jmea.201601.12.html [5] JANG D, JANG S. Development of a lightweight CFRP coil spring[C]//SAE 2014 World Congress & Exhibition, 2014. https://www.sae.org/publications/technical-papers/content/2014-01-1057/ [6] OH S H, CHOI B L.A determination of design parameters for application of composite coil spring in a passenger vehicle[J].Journal of the Korean Society of Manufacturing Process Engineers 2013, 12(1):77-83. http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=HGKGB6_2013_v12n1_77 [7] DJOMSEU P, SARDOU M A, BERG T R. Composite coil spring development and testing[C]//IEEE/ASME/ASCE 2008 Joint Rail Conference. Piscataway, NJ: IEEE Press, 2008: 71-78. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1630839 [8] WANG G G.Adaptive response surface method using inherited Latin hypercube design points[J].Journal of Mechanical Design, 2003, 125(2):210-220. doi: 10.1115/1.1561044 [9] 宁方飞, 刘晓嘉.一种新的响应面模型及其在轴流压气机叶型气动优化中的应用[J].航空学报, 2007, 28(4):813-820. http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201208014.htmNING F F, LIU X J.New response surface model and its applications in aerodynamic optimization of axial compressor blade profile[J].Acta Aeroautica et Astronautica Sinica, 2007, 28(4):813-820(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZGJX201208014.htm [10] ARORA V K, BHUSHAN G, AGGARWAL M L.Enhancement of fatigue life of multi-leaf spring by parameter optimization using RSM[J].Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2017, 39(4):1333-1349. doi: 10.1007%2Fs40430-016-0638-z [11] 杨永宝, 金达锋, 高希.CFRP圆柱螺旋弹簧静刚度预测理论及仿真[J].汽车技术, 2013(7):21-25. http://edu.wanfangdata.com.cn/Periodical/Detail/qcjs201307006YANG Y B, JIN D F, GAO X.Static stiffness prediction theory and simulation of CFRP cylindrical coil spring[J].Automobile Technology, 2013(7):21-25(in Chinese). http://edu.wanfangdata.com.cn/Periodical/Detail/qcjs201307006 [12] 朱建辉, 曾建江, 陈滨琦, 等.复合材料层合板压缩载荷下渐进损伤分析与试验验证[J].机械科学与技术, 2015, 34(5):785-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201505026ZHU J H, ZENG J J, CHEN B Q, et al.Analysis and experimental validation of the progressive damage for laminate composite under compression[J].Mechanical Science & Technology for Aerospace Engineering, 2015, 34(5):785-789(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxkxyjs201505026 [13] 沈观林, 胡更开, 刘彬.复合材料力学[M].北京:清华大学出版社, 2013:231-237.SHEN G L, HU G K, LIU B. Mechanics of composite materials[M].Beijing:Tsinghua University Press, 2013:231-237(in Chinese). [14] 时培成, 龚建成.汽车悬架变刚度螺旋弹簧最优化设计[J].现代制造工程, 2006(11):112-114. doi: 10.3969/j.issn.1671-3133.2006.11.037SHI P C, GONG J C.Optimal design for the variable stiffness coil spring of vehicle suspension[J].Modern Manufacturing Engineering, 2006(11):112-114(in Chinese). doi: 10.3969/j.issn.1671-3133.2006.11.037 [15] ZHAN B W, SUN L Y, HUANG B C. Energy absorption optimization of GFRP Laminate by considering inner-lamina damage model with parameter identification[C]//ASME 2016 International Mechanical Engineering Congress and Exposition. New York: ASME, 2016, 11: 65774. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2602830 [16] 徐小力, 徐洪安, 王少红.旋转机械的遗传算法优化神经网络预测模型[J].机械工程学报, 2003, 39(2):140-144. http://www.cqvip.com/QK/94293X/201601/667685895.htmlXU X L, XU H A, WANG S H.Predicting model of the neural network with adaptation based on GA optimization to rotary machinery[J].Chinese Journal of Mechanical Engineering, 2003, 39(2):140-144(in Chinese). http://www.cqvip.com/QK/94293X/201601/667685895.html