-
摘要:
从试验及有限元2个方面对复合材料蜂窝夹芯挖补修理结构的弯曲性能进行研究。通过3点弯曲试验对无损及修理件弯曲性能进行测试,试验结果表明,蜂窝夹芯结构破坏模式为典型的蜂窝剪切破坏,修理件相比于无损件弯曲强度恢复率为110%,修理后结构弯曲刚度也略高于无损件;基于试验结果建立三维有限元模型对蜂窝夹芯修理结构的弯曲性能进行研究,通过用户自定义子程序VUSDFLD编写Hashin失效准则、基于应力的Besant失效准则,实现复合材料面板及蜂窝芯子2种材料的损伤起始及演化。数值模型得到的破坏模式、破坏载荷及弯曲刚度均与试验结果吻合得较好;改变有限元模型参数,研究损伤直径及补片厚度对修理后弯曲性能影响,结果表明,随着损伤直径从30~70 mm逐渐增加,修理件强度先增加后减小,并在损伤直径为50 mm时取得最大值,此外,补片厚度为1~2.5 mm时弯曲强度恢复率高于100%;本文为复合材料蜂窝夹芯结构的修理设计提供了可靠的数值模拟方法。
Abstract:The flexural behavior of scarf repaired honeycomb sandwich structures was investigated via experiments and finite element analysis. A three-point bending test was carried out on both undamaged and repaired specimens. Test results demonstrate that the failure mode is core shearing, and that the flexural strength recovery ratio of the repaired to the undamaged panels is 110%. The flexural rigidity of the repaired panel is slightly higher than that of the undamaged panel. Based on these results, a 3D finite element model was proposed to investigate the flexural behavior of the repaired specimens. Using VUSDFLD, we developed Hashin fabric and Besant failure criteria to achieve the damage initiation and evolution of composite and honeycomb materials. The failure pattern, the ultimate load and the calculated stiffness are in good agreement with the test results. Then the effect of the damage diameter and the thickness of the patch on the repaired panels was analyzed by changing the parameters of the FEM, and the results show that with the increase of the damage diameter from 30 mm to 70 mm, the ultimate loads of repaired specimens increase, then decrease, and finally reach the maximal value at the diameter of 50 mm; besides, the strength recovery ratio is larger than 100% while the thickness of the patch ranges from 1 mm to 2.5 mm. This study indicates that the numerical model developed provides an efficient method for repair design of composite honeycomb sandwich panels.
-
表 1 蜂窝夹芯结构弯曲试验结果
Table 1. Bending test results of honeycomb sandwich specimens
试件类型 破坏载荷/kN 离散系数/% 恢复率/% 无损件 4.489 1.2 修理件 4.937 2.3 110 表 2 复合材料单层材料性能参数
Table 2. Property parameters of composite unidirectional tape
参数 E11/GPa E22/GPa G12/GPa G23/GPa ν12 XT/MPa XC/MPa YT/MPa YC/MPa S/MPa 数值 146 10.4 6.45 3.37 0.27 2 391 1 410 67.6 219 94.8 表 3 复合材料二维Hashin失效准则
Table 3. 2D Hashin failure criterion of composite material
失效模式 失效判据 纤维拉伸失效(σ11>0) 纤维压缩失效(σ11 < 0) 基体拉伸失效(σ22>0) 基体压缩失效(σ22 < 0) 表 4 蜂窝芯子NRH-2-48材料性能参数
Table 4. Property parameters of honeycomb core NRH-2-48 material
参数 ETT/MPa GLT/MPa GWT/MPa STT/MPa SLT/MPa SWT/MPa 数值 107 37.8 28.8 1.13 1.16 0.67 表 5 胶膜材料J-299性能参数
Table 5. Property parameters of adhesive film material J-299
参数 Knn= Ktt = Kss/GPa tn0/MPa tt0= ts0/MPa Gn0/GPa Gs0= Gt0/GPa 数值 1 000 000 24 30 0.3 0.9 表 6 有限元与试验结果对比
Table 6. Result comparison between FEM and test
对比项 破坏载荷/kN 应变/με 测点1 测点2 测点3 测点4 测点5 有限元 4.446 3 139 3 106 3 092 3 072 703 试验 4.522 3 342 3 329 3 362 3 277 718 误差/% 1.7 6.1 6.7 8.7 6.6 2.1 表 7 不同厚度补片铺层设计
Table 7. Layer design of patch with varied thickness
补片厚度/mm 铺层顺序 0.5 [45/90/0/-45] 1 [45/90/-45/0]s 1.5 [45/90/-45/0/45/0]s 2 [45/90/-45/0/45/-45/90/0]s 2.5 [45/90/-45/0/45/-45/90/0/45/0]s 3 [45/90/-45/0/45/-45/90/0/45/90/-45/0]s 3.5 [45/90/-45/0/45/-45/90/0/45/90/-45/0/45/90]s -
[1] 杜善义, 关志东.我国大型客机先进复合材料应对策略思考[J].复合材料学报, 2008, 25(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb200801001DU S Y, GUAN Z D.Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J].Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fhclxb200801001 [2] SCOTTI S J, ClAY C, REZIN M. Structures and materials technologies for extreme environments applied to reusable launch vehicles: AIAA-2003-2679[R]. Reston: AIAA, 2003: 1-10. [3] 杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200701000.htmDU S Y.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200701000.htm [4] NIU M C Y. Composite airframe structures[M]. [S. l. ]: Adaso Adastra Engineering Center, 1992: 56-73. [5] 陈绍杰.复合材料结构修理指南[M].北京:航空工业出版社, 2001:37-185.CHEN S J.Composite structures repair guide[M].Beijing:Aviation Industry Press, 2001:37-185(in Chinese). [6] 中国航天研究院.复合材料结构设计手册[M].北京:航空工业出版社, 2001:550-569.Chinese Aeronautical Establishment.Composite structures design manual[M].Beijing:Aviation Industry Press, 2001:550-569(in Chinese). [7] DUONG C N, WANG C H.Composite repair theory and design[M].Netherlands:Elsevier BV, 2007:105-134. [8] 汪海, 陈秀华, 郭杏林, 等.复合材料蜂窝夹芯结构修理后强度研究[J].航空学报, 2001, 22(3):270-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb200103013WANG H, CHEN X H, GUO X L, et al.Strength investigation of composite honeycomb structures after repair[J].Acta Aeronautica et Astronautica Sinica, 2001, 22(3):270-273(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb200103013 [9] 李剑峰, 燕瑛, 廖宝华, 等.复合材料蜂窝夹芯结构单面贴补弯曲性能的分析模型与试验研究[J].航空学报, 2013, 34(8):1884-1891. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkxb201308014LI J F, YAN Y, LIAO B H, et al.Analysis model and experimental study of bending behavior of composite honeycomb sandwich structures with one-side bonded repair[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1884-1891(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkxb201308014 [10] 邹建胜, 曾建江, 童明波, 等.不同夹芯复合材料夹层结构的剪切破坏行为[J].机械工程材料, 2012, 36(9):38-41. http://www.cqvip.com/QK/90723X/201209/43196641.htmlZOU J S, ZENG J J, TONG M B, et al.Shear damage behavior of composite sandwich plate with different cores[J].Materials for Mechanical Engineering, 2012, 36(9):38-41(in Chinese). http://www.cqvip.com/QK/90723X/201209/43196641.html [11] AVERY J L, SANKAR B V.Compressive failure of sandwich beams with debonded face-sheets[J].Journal of Composite Materials, 2000, 34(14):1176-1199. doi: 10.1177/002199830003401402 [12] HANSEN I.Compression behavior of FRP sandwich specimen with interface debonded[J].Journal of Composite Materials, 1998, 32(4):335-360. doi: 10.1177/002199839803200402 [13] TOMBLIN J S, SALAH L, WELCH J M. Bonded repair of aircraft composite sandwich structures: DOT/FAA/AR-03/74[R]. Washington, D. C. : Office of Aviation Research, 2004: 11-13. [14] 中国国家标准化管理委员会. 夹层结构弯曲性能试验方法: GB/T 1456-2005[S]. 北京: 中国国家标准化管理委员会, 2005: 1-11.Standardization Administration of China. Testmethod for bending performance of sandwich structures: GB/T 1456-2005[S]. Beijing: Standardization Administration of China, 2005: 1-11(in Chinese). [15] 刘遂, 关志东, 郭霞, 等.复合材料蜂窝加芯板挖补修理后的侧压性能[J].科技导报, 2013, 31(7):28-32. http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201307018.htmLIU S, GUAN Z D, GUO X, et al.Lateral compressive behavior of scarf repaired honeycomb sandwich panels[J].Science and Technology Review, 2103, 31(7):28-32(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201307018.htm [16] HASHIN Z.Failure criteria for unidirectional fiber composite[J].Journal of Applied Mechanics, 1980, 47(2):329-334. doi: 10.1115/1.3153664 [17] 姜晓伟, 曾建江, 曾昭炜, 等.配合方式对复合材料单钉单剪螺栓连接接头刚度的影响及其机制[J].复合材料学报, 2016, 33(3):589-596. http://www.cqvip.com/QK/96080X/201603/668343240.htmlJIANG X W, ZENG J J, ZENG Z W, et al.Influence and mechanism of fitting mode on stiffness of single-bolt, single-lap composite bolted joint[J].Acta Materiae Compositae Sinica, 2016, 33(3):589-596(in Chinese). http://www.cqvip.com/QK/96080X/201603/668343240.html [18] 国防科学技术工业委员会.飞机结构用芳纶纸基蜂窝芯材规范:GJB 1874-94[S].北京:国防科学技术工业委员会, 1994:1-13. https://www.wenkuxiazai.com/word/dfa866353968011ca30091a5-1.doc [19] 沈观清, 章怡宁.典型复合材料机翼铺层设计分析[J].航空学报, 1993, 14(10):467-471. doi: 10.3321/j.issn:1000-6893.1993.10.005SHEN G Q, ZHANG Y N.Alaminating design analysis for typical composite wing[J].Acta Aeronautica et Astronautica Sinica, 1993, 14(10):467-471(in Chinese). doi: 10.3321/j.issn:1000-6893.1993.10.005 [20] 冯雁, 郑锡涛, 吴淑一, 等.轻型复合材料机翼铺层优化设计与分析[J].航空学报, 2015, 36(6):1858-1866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201506014FENG Y, ZHENG X T, WU S Y, et al.Layup optimization design and analysis of super lightweight composite wing[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1858-1866(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201506014