留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度扰动对ODW结构影响的数值模拟

陈楠 SudipBHATTRAI 唐豪

陈楠, SudipBHATTRAI, 唐豪等 . 温度扰动对ODW结构影响的数值模拟[J]. 北京航空航天大学学报, 2018, 44(7): 1537-1546. doi: 10.13700/j.bh.1001-5965.2017.0561
引用本文: 陈楠, SudipBHATTRAI, 唐豪等 . 温度扰动对ODW结构影响的数值模拟[J]. 北京航空航天大学学报, 2018, 44(7): 1537-1546. doi: 10.13700/j.bh.1001-5965.2017.0561
CHEN Nan, Sudip BHATTRAI, TANG Haoet al. Numerical simulation of influence of temperature disturbance on oblique detonation wave structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1537-1546. doi: 10.13700/j.bh.1001-5965.2017.0561(in Chinese)
Citation: CHEN Nan, Sudip BHATTRAI, TANG Haoet al. Numerical simulation of influence of temperature disturbance on oblique detonation wave structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1537-1546. doi: 10.13700/j.bh.1001-5965.2017.0561(in Chinese)

温度扰动对ODW结构影响的数值模拟

doi: 10.13700/j.bh.1001-5965.2017.0561
基金项目: 

国家自然科学基金 51576098

详细信息
    作者简介:

    陈楠  男, 硕士研究生。主要研究方向:爆轰力学

    唐豪  男, 博士, 教授, 博士生导师。主要研究方向:燃烧与传热和流体力学

    通讯作者:

    唐豪.E-mail:hao.tang@nuaa.edu.cn

  • 中图分类号: O381

Numerical simulation of influence of temperature disturbance on oblique detonation wave structure

Funds: 

National Natural Science Foundation of China 51576098

More Information
  • 摘要:

    利用二维非稳态无黏可压欧拉方程模拟得到了能够稳定自持的斜爆震波(ODW)结构,在某时刻从进口边界施加一温度的瞬间变化(分别为下降100 K、上升100 K),从而得到一次温度扰动。模拟结果表明,ODW结构能够顺利过渡,但扰动传播过后,ODW的内部不稳定性被进一步被释放,胞格结构更加清晰;结合定量和定性分析发现,扰动主要以激波、膨胀波和弱压缩波3种形式在燃烧室内传播;对比2种扰动下的结果得出,3种波在爆震区内传播过程中的位置分布相同,但在爆燃区内却完全相反,造成这种结果的主要原因是2种扰动引发的弱压缩波的强度不同,从而对ODW结构调整所起到的作用也存在很大区别;在温降扰动下,3种波沿壁面向下游传播,其中激波会呈现出弓形激波、马赫反射、规则反射和近乎垂直于壁面的正激波4种形态,而在温升扰动下,3种波沿ODW面向下游传播,传播形态也较为稳定。

     

  • 图 1  计算区域及ODW结构示意图

    Figure 1.  Schematic of ODW structure and computational domain

    图 2  t=0.09 ms时3种网格划分下温度分布云图

    Figure 2.  Temperature distribution contours of three kinds of mesh density at t=0.09 ms

    图 3  t=0.09 ms时3种网格划分下沿斜楔面的压力分布(Ma=5.95,T=796 K,P=35.04 kPa)

    Figure 3.  Pressure distribution along ramp at t=0.09 ms in three kinds of mesh density (Ma=5.95, T=796 K and P=35.04 kPa)

    图 4  t=0.09 ms时3种网格划分下y=4 mm上的温度和OH-质量浓度分布(Ma=5.95,T=796 K,P=35.04 kPa)

    Figure 4.  Distribution of temperature and OH- mass density at t=0.09 ms measured at y=4 mm in three kinds of mesh density (Ma=5.95, T=796 K and P=35.04 kPa)

    图 5  t=0.1 ms时密度分布云图

    Figure 5.  Density distribution contours at t=0.1 ms

    图 6  温降扰动传入至ODW重新调整到稳定状态的时序图

    Figure 6.  Sequence charts for variation of ODW structure from introducing temperature drop disturbance to retrieving stabilization

    图 7  三波点附近扰动前后的密度分布灰度图

    Figure 7.  Grayscale images for density nearby triple point before and after disturbance

    图 8  第1阶段局部放大速度云图

    Figure 8.  Partially amplified velocity contour for the first period

    图 9  新三波点处温度、速度和压力随时间变化曲线

    Figure 9.  Profiles for temperature, velocity and pressure nearby new triple point changing with time

    图 10  温降扰动引起的激波、膨胀波及弱压缩波在反应区内传播的时序简图

    Figure 10.  Sequence sketches for propagation of shock wave, expansion waves and weak compression wave in reaction zone caused by temperature drop disturbance

    图 11  ΔT=-100 K时3个区域内观测点的Ma变化

    Figure 11.  Variation of Ma in sampling points from three zones at ΔT=-100 K

    图 12  t=0.14 ms时Ma分布云图和温升扰动引起的激波、膨胀波及弱压缩波在反应区内的分布简图

    Figure 12.  Distribution contours of Ma and distribution sketches for propagation of shock wave, expansion waves and weak compression wave in reaction zone at t=0.14 ms

    图 13  ΔT=100 K时3个区域内观测点的Ma变化

    Figure 13.  Variation of Ma in sampling points from three zones at ΔT=100 K

    表  1  19步氢气/空气反应模型[19]

    Table  1.   19-step H2-Air reaction model[19]

    反应 A β Ea/(kJ·mol-1)
    H+O2=OH+O 1.91×1014 0 16 440
    H2+O=H+OH 5.08×104 2.67 6 292
    H2+OH=H+H2O 2.16×108 1.51 3 430
    O+H2O=OH+OH 2.97×106 2.02 13 400
    H2+M=H+H+M 4.57×1019a -1.40 105 100
    O+O+M=O2+M 6.17×1015a -0.50 0
    H+O+M=OH+M 4.72×1018a -1.0 0
    H+OH+M=H2O+M 4.50×1022b -2.0 0
    H+O2+M=HO2+M 1.48×1012c 0.60 0
    H+HO2=H2+O2 1.66×1013 0 820
    H+HO2=OH+OH 7.08×1013 0 300
    O+HO2=O2+OH 3.25×1013 0 0
    OH+HO2=H2O+O2 2.89×1013 0 -500
    HO2+HO2=H2O2+O2 4.20×1014 0 11 980
    H2O2+M =OH+OH+M 2.95×1014a 0 48 400
    H2O2+H=H2O+OH 2.41×1013 0 3 970
    H2O2+H=HO2+H2 6.03×1013 0 7 950
    H2O2+O=HO2+OH 9.55×106 2.0 3 970
    H2O2+OH=HO2+H2O 1.00×1012 0 0
    注:第3体效率:a-f H2O=12.0, f H2=2.5;b-f H2O=12.0, f H2=0.73;c-f H2O=14.0, f H2=1.3。
    下载: 导出CSV
  • [1] FUJIWARA T, MATSUO A, NOMOTO H. A two-dimensional detonation supported by a blunt body or a wedge[C]//26th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1988. doi: 10.2514/6.1988-98
    [2] WANG Y Y, FUJIWARA T, AOKI T, et al. Three-dimensional standing oblique detonation wave in a hypersonic flow[C]//26th Aerospace Sciences Meeting. Reston: AIAA, 1988. doi: 10.2514/6.1988-478
    [3] CAMBIER J L, ADELMAN H G, MENEES G P.Numerical simulations of oblique detonations in supersonic combustion chambers[J].Journal of Propulsion and Power, 1989, 5(4):482-491. doi: 10.2514/3.23180
    [4] DENNIS E G, DAVID T D. Numerical modelling of standing oblique detonation waves: AIAA-88-0063[R]. Reston: AIAA, 1988.
    [5] YUNGSTER S, EBERHARDT S, BRUCKNER A. Numerical simulation of shock-induced combustion generated by high-speed projectiles in detonable gas mixtures[C]//27th Aerospace Sciences Meeting. Reston: AIAA, 1989. 10.2514/6.1989-673
    [6] POWERS J, GONTHIER K. Reaction zone structure of weak underdriven oblique detonations[C]//Aerospace Sciences Meeting and Exhibit. Reaction Zone Structure of Weak Underdriven Oblique Detonations, 1992. doi: 10.2514/6.1992-347
    [7] PIMENTEL C A R, AZEVEDO J L F, SILVA F D, et al.Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions[J].Journal of the Brazilian Society of Mechanical Sciences, 2002, 24(3):149-157. doi: 10.1590/S0100-73862002000300002
    [8] BERLYAND A T, VLASENKO V V, SVISHCHEV S V.Stationary and nonstationary wave structures that arise in stabilization of detonation over a compression surface[J].Combustion:Explosion, and Shock Waves, 2001, 37(1):82-98. doi: 10.1023/A:1002876911205
    [9] TENG H H, JIANG Z L, NG H D.Numerical study on unstable surfaces of oblique detonations[J].Journal of Fluid Mechanics, 2014, 744(2):111-128. http://adsabs.harvard.edu/abs/2014JFM...744..111T
    [10] TENG H H, JIANG Z L.On the transition pattern of the oblique detonation structure[J].Journal of Fluid Mechanics, 2012, 713(6):659-669. http://adsabs.harvard.edu/abs/2012JFM...713..659T
    [11] TENG H H, NG H D, LI K, et al.Evolution of cellular structures on oblique detonation surfaces[J].Combustion & Flame, 2014, 162(2):470-477. https://www.sciencedirect.com/science/article/pii/S0010218014002168
    [12] TENG H, NG H D, JIANG Z.Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture[J].Proceedings of the Combustion Institute, 2016, 32(2):2735-2742. https://www.sciencedirect.com/science/article/pii/S154074891630503X
    [13] WANG T, ZHANG Y, TENG H, et al.Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture[J].Physics of Fluids, 2015, 27(9):096101. doi: 10.1063/1.4930986
    [14] GUI M Y, FAN B C, DONG G.Periodic oscillation and fine structure of wedge-induced oblique detonation waves[J].Acta Mechanica Sinica, 2011, 27(6):922-928. doi: 10.1007/s10409-011-0508-y
    [15] LIU Y, WU D, YAO S.Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow mach number[J].Combustion Science and Technology, 2015, 187(6):843-856. doi: 10.1080/00102202.2014.978865
    [16] LIU Y, HAN X D, YAO S B, et al.A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge[J].Shock Waves, 2016, 26(6):729-739. doi: 10.1007/s00193-016-0626-3
    [17] GHORBANIAN K, STERLING J D.Influence of formation processes on oblique detonation wave stabilization[J].Journal of Propulsion & Power, 2015, 12(3):509-517. doi: 10.2514/3.24064
    [18] BHATTRAI S, HAO T.Numerical study of shcramjet combustor characteristic control techniques[J].Frontiers in Aerospace Engineering, 2013, 2(3):189-198. https://www.researchgate.net/publication/274701718_Numerical_Study_of_Shcramjet_Combustor_Characteristic_Control_Techniques
    [19] MARCUS Ó C, CURRAN H J, SIMMIE J M, et al.A comprehensive modeling study of hydrogen oxidation[J].International Journal of Chemical Kinetics, 2004, 36(11):603-622. doi: 10.1002/kin.v36:11
    [20] 董刚, 范宝春, 谢波.氢气-空气混合物中瞬态爆震过程的二维数值模拟[J].高压物理学报, 2004, 18(1):40-46. doi: 10.11858/gywlxb.2004.01.008

    DANG G, FAN B C, XIE B.Two-dimensional simulation of transient detonation process for H2O2-N2 mixture[J].Chinese Journal of High Pressure Physics, 2004, 18(1):40-46(in Chinese). doi: 10.11858/gywlxb.2004.01.008
    [21] 姜孝海, 范宝春, 董刚, 等.旋转爆震流场的数值模拟[J].推进技术, 2007, 28(4):403-407. http://www.oalib.com/paper/5110881

    JIANG X H, FAN B C, DONG G, et al.Numerical investigation on the flow field of rotating detonation wave[J].Journal of Propulsion Technology, 2007, 28(4):403-407(in Chinese). http://www.oalib.com/paper/5110881
    [22] FUSINA G, SISLIAN J, PARENT B. Computational study of formation and stability of standing oblique detonation waves[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2013. doi: 10.2514/6.2004-1125
    [23] CHOI J Y, KIM D W, JEUNG I S, et al.Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation[J].Proceedings of the Combustion Institute, 2007, 31(2):2473-2480. doi: 10.1016/j.proci.2006.07.173
    [24] DUPRÉ G, PERALDI O, LEE J H, et al. Propagation of detonation waves in an acoustic absorbing walled tube[C]//Progress in Astronaut and Aeronaut. Reston: AIAA, 1988, 114: 248-263. doi: 10.2514/5.9781600865886.0248.0263
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  6
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-06
  • 录用日期:  2017-11-17
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回
    常见问答