-
摘要:
通过分析无人作战飞机(UCAV)优势概率和任务联合威胁以及定义任务时间,建立了以目标价值毁伤、编队损耗代价和时间消耗为性能指标的多无人作战飞机(UCAVs)多约束动态任务分配数学模型,采用改进的灰狼优化(GWO)算法对数学模型进行求解;针对基本GWO算法求解早熟的缺点,给出了自适应调整策略和跳出局部最优策略,引入了二次曲线控制方法;对UCAVs动态协同任务分配特点,设计了目标任务序列编码方式,提出了基于自适应GWO(SAGWO)算法的UCAVs多目标动态任务分配方法。从静态与动态2种情况分别对该方法进行仿真验证;仿真结果表明,该方法是有效的,相比较于其他算法,其优化过程快速精准。
-
关键词:
- 多无人作战飞机(UCAVs) /
- 动态协同任务分配 /
- 目标依赖矩阵 /
- 任务时间片 /
- 自适应灰狼优化(SAGWO)算法
Abstract:Through analyzing unmanned combat aerial vechicle (UCAV) advantage probability and task joint threat and defining task time, the task allocation model for UCAVs with multi-constraint dynamic task allocation is built up, which takes target value damage, UCAV attrition and task expending time as the performance indexes, and the improved grey wolf optimization (GWO) algorithm is used to solve the model. Aimed at the flaw of early convergence from the original algorithm, the GWO algorithm is improved by proposing a self-adaptive adjustment strategy and a step-out local optimum strategy, using quadratic curve control method. According to the characteristics of UCAVs dynamic cooperative task allocation, target task sequence coding is designed to present the UCAVs dynamic task allocation method based on self-adaptive GWO (SAGWO) algorithm. Finally, the simulation results for static and dynamic task allocation show that the task allocation method based on SAGWO algorithm is valid, and compared with other algorithms, the optimizing process is rapid and accurate.
-
表 1 UCAV编队信息设置
Table 1. Information setting of UCAV formation
UCAV 位置/
km导弹数量×型号 软杀伤武器数量 速度/
(m·s-1)价值量 V1 (35, 0) 2×A-AGM 2 238 0.8 V2 (40, 6) 2×B-AGM 1 238 0.9 V3 (48, 10) 2×A-AGM 2 238 0.95 V4 (54, 9) 2×B-AGM 1 238 0.95 V5 (62, 6) 2×A-AGM 2 238 0.85 V6 (67, 0) 2×B-AGM 0 238 0.8 表 2 UCAV的武器适应度
Table 2. Weapon fitness of UCAV
导弹编号 V1 V2 V3 V4 V5 V6 1 0.98 0.95 0.99 0.99 0.99 0.95 2 1 1 0.96 0.97 1 1 表 3 目标信息设置
Table 3. Information setting of targets
目标 类型 位置/km 价值量 T1 SAM (15, 74) 0.75 T2 Radar (20, 85) 0.7 T3 SAM (30, 80) 0.75 T4 AAGun (40, 76) 0.5 T5 AAGun (60, 76) 0.5 T6 AAGun (70, 80) 0.5 T7 SAM (80, 85) 0.75 T8 Radar (85, 74) 0.7 表 4 目标间依赖矩阵
Table 4. Dependence matrix of targets
目标 T1 T2 T3 T4 T5 T6 T7 T8 T1 1 0.2 0.9 0.95 0.95 0.95 0.9 0.1 T2 0.2 1 0.2 0.1 0.1 0.1 0.1 0.5 T3 0.9 0.8 1 0.95 0.95 0.95 0.9 0.8 T4 0.1 0.1 0.3 1 0.1 0.1 0.1 0.1 T5 0.1 0.1 0.3 0.1 1 0.1 0.1 0.1 T6 0.1 0.1 0.3 0.1 0.1 1 0.1 0.1 T7 0.9 0.8 0.95 0.95 0.95 0.9 1 0.8 T8 0.2 1 0.2 0.1 0.1 0.1 0.1 1 表 5 UCAV对目标的优势概率
Table 5. Advantage probability of UCAV to target
UCAV 导弹编号 T1 T2 T3 T4 T5 T6 T7 T8 V1 1 0.398 0.380 0.399 0.398 0.387 0.398 0.390 0.388 2 0.400 0.406 0.421 0.400 0.408 0.400 0.391 0.403 V2 3 0.459 0.395 0.441 0.487 0.457 0.396 0.395 0.389 4 0.465 0.420 0.446 0.485 0.461 0.401 0.400 0.400 V3 5 0.399 0.396 0.411 0.399 0.401 0.386 0.395 0.399 6 0.396 0.394 0.396 0.369 0.396 0.390 0.396 0.396 V4 7 0.435 0.398 0.442 0.498 0.508 0.461 0.399 0.467 8 0.434 0.397 0.440 0.496 0.506 0.458 0.397 0.465 V5 9 0.399 0.400 0.394 0.399 0.407 0.399 0.402 0.399 10 0.403 0.400 0.404 0.405 0.400 0.411 0.400 0.400 V6 11 0.395 0.395 0.387 0.395 0.426 0.396 0.395 0.430 12 0.410 0.405 0.400 0.399 0.431 0.404 0.424 0.432 表 6 目标对UCAV的威胁概率
Table 6. Threat probability of target to UCAV
目标 V1 V2 V3 V4 V5 V6 T1 0.528 0.651 0.705 0.668 0.573 0.400 T2 0.124 0.159 0.175 0.160 0.126 0.079 T3 0.523 0.649 0.706 0.669 0.575 0.421 T4 0.121 0.158 0.176 0.163 0.130 0.083 T5 0.120 0.157 0.201 0.162 0.130 0.082 T6 0.122 0.157 0.217 0.154 0.130 0.101 T7 0.514 0.638 0.695 0.660 0.567 0.397 T8 0.124 0.159 0.175 0.161 0.127 0.080 表 7 UCAVs最优任务分配
Table 7. Best task allocation of UCAVs
目标 T1 T2 T3 T4 T5 T6 T7 T8 UCAV V2 V1 V2 V3 V4 V6 V5 V4 表 8 UCAV飞行时间矩阵
Table 8. Fly time matrix of UCAV
UCAV T1 T2 T3 T4 T5 T6 T7 T8 V1 322.1 362.7 336.8 320.0 336.2 366.9 404.1 375.3 V2 304.4 342.4 313.7 294.1 305.9 335.5 372.1 342.6 V3 302.5 336.4 303.7 279.3 281.8 308.3 342.6 310.6 V4 318.5 349.8 314.9 287.6 282.6 305.8 337.5 302.6 V5 347.3 375.9 338.8 308.3 294.2 312.7 340.4 301.6 V6 380.1 408.1 370.3 338.9 320.7 336.4 361.3 320.0 表 9 机动目标速度
Table 9. Speed of maneuvering targets
目标 合速度/
(m·s-1)x方向速度/
(m·s-1)y方向速度/
(m·s-1)T1 25 25sin(πt/180) 25cos(πt/180) T2 10 10sin(π/4) -10cos(π/4) T3 25 -25sin(πt/180) -25cos(πt/180) T4 7 -7 0 T5 7 7sin(π/3) 7cos(π/3) T6 7 7 0 T7 25 -25sin(π/6) -25cos(π/6) T8 10 -10 0 表 10 5个时间片的任务分配方案比较
Table 10. Comparison of task allocation scheme for 5 time slices
时间/s V1 V2 V3 V4 V5 V6 0 T1 T3, T2 T4 T5, T8 T7 T6 60 T2 T1, T3 T4 T5 T6, T7 T8 120 T3 T1, T2 T4 T5 T6, T7 T8 180 T3, T2 T1 T5 T4 T6 T8, T7 240 T3 T1, T2 T5 T4 T6 T8, T7 表 11 5个时间片的任务分配优化时间消耗与适应度值
Table 11. Task allocation optimization time and fitness for 5 time slices
时间/s 优化时间/s 最优适应度值 平均适应度值 0 0.286 8 0.771 5 0.868 2 60 0.269 3 0.817 6 0.971 2 120 0.263 8 0.702 6 0.907 6 180 0.263 5 0.546 4 0.732 2 240 0.262 5 0.323 5 0.498 0 表 12 一架UCAV失效前后的任务分配方案比较
Table 12. Comparison of task allocation scheme before and after invalidation of an UCAV
UCAV V1 V2 V3 V4 V5 V6 失效前 失效后 失效前 失效后 失效前 失效后 失效前 失效后 失效前 失效后 失效前 失效后 目标 T3 T4, T3 T1, T2 T1, T2 T5 T5 T4 0 T6 T6 T8, T7 T8, T7 表 13 一架UCAV失效前后的任务分配优化结果对比
Table 13. Comparison of task allocation optimized result before and after invalidation of an UCAV
优化指标 优化时间/s 最优适应度值 平均适应度值 失效前 失效后 失效前 失效后 失效前 失效后 数值 0.262 5 0.249 3 0.323 5 0.376 4 0.498 0 0.542 0 表 14 新增目标的信息设置
Table 14. Information setting of increased targets
目标 类型 位置/km 价值量 速度/(m·s-1) T9 SAM (47, 53) 0.75 (-25, 0) T10 SAM (69, 68) 0.75 (25, 0) 表 15 新增目标依赖矩阵
Table 15. Dependence matrix of increased targets
目标 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T9 0.5 0.2 0.6 0.3 0.1 0.1 0.6 0.1 1 0.9 T10 0.4 0.1 0.55 0.2 0.3 0.2 0.7 0.1 0.9 1 表 16 增加目标前后的任务分配方案比较
Table 16. Comparison of task allocation scheme before and after increased targets
UCAV V1 V2 V3 V4 V5 V6 增加目标前 增加目标后 增加目标前 增加目标后 增加目标前 增加目标后 增加目标前 增加目标后 增加目标前 增加目标后 增加目标前 增加目标后 目标 T3 T3 T1, T2 T1, T2 T5 T9,T4 T4 T10,T5 T6 T6 T8, T7 T8, T7 表 17 增加目标前后的任务分配优化结果对比
Table 17. Comparison of task allocation optimized result before and after increased targets
优化指标 优化时间/s 最优适应度值 平均适应度值 增加目标前 增加目标后 增加目标前 增加目标后 增加目标前 增加目标后 数值 0.262 5 0.287 1 0.323 5 0.441 6 0.498 0 0.883 0 -
[1] 龙涛, 朱华勇, 沈林成.多UCAV协同中基于协商的分布式任务分配研究[J].宇航学报, 2006, 27(3):457-462. doi: 10.3321/j.issn:1000-1328.2006.03.026LONG T, ZHU H Y, SHEN L C.Negotiation-based distributed task allocation for cooperative multiple unmanned combat aerial vehicles[J].Journal of Astronautics, 2006, 27(3):457-462(in Chinese). doi: 10.3321/j.issn:1000-1328.2006.03.026 [2] 杨啸天, 刘小军, 冯金富, 等.不确定环境下空地多目标攻击优先权决策[J].南京理工大学学报, 2012, 36(4):567-571. doi: 10.3969/j.issn.1005-9830.2012.04.003YANG X T, LIU X J, FENG J F, et al.Priority decision of air to surface multi-target attack under uncertainty[J].Journal of Nanjing University of Science and Technology, 2012, 36(4):567-571(in Chinese). doi: 10.3969/j.issn.1005-9830.2012.04.003 [3] 王永泉, 罗建军.基于多群体改进萤火虫算法的UCAV协同多目标分配[J].西北工业大学学报, 2014, 32(3):451-455. doi: 10.3969/j.issn.1000-2758.2014.03.023WANG Y Q, LUO J J.Target assignment in cooperative attacking of UCAVs based on multi-intelligence improved glowworm swarm optimization algorithm[J].Journal of Northwestern Polytechnical University, 2014, 32(3):451-455(in Chinese). doi: 10.3969/j.issn.1000-2758.2014.03.023 [4] 颜骥, 李相民, 刘波.基于离散粒子群-郭涛算法分配多无人机协同任务[J].国防科技大学学报, 2015, 37(4):165-171. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GFKJ201504027&dbname=CJFD&dbcode=CJFQYAN J, LI X M, LIU B.Cooperative task allocation of multi-UAVs with mixed DPSO-GT algorithm[J].Journal of National University of Defense Technology, 2015, 37(4):165-171(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GFKJ201504027&dbname=CJFD&dbcode=CJFQ [5] RABBATH C A, GOGNON E, LAUZON M.On the cooperative control of multiple unmanned aerial vehicles[J].IEEE Canadian Review, 2004(46):15-19. http://canrev.ieee.ca/cr46/pages15-19.pdf [6] AMATO P, FARINA M.An alift-inspired evoluntionary algorithm for dynamic multiobjective optimization problems[J].Soft Computing:Methodologies and Applications, 2005, 32:113-125. doi: 10.1007/3-540-32400-3_9 [7] 魏政磊, 赵辉, 韩邦杰, 等.基于自适应GWO的多UCAV协同攻击目标决策[J].计算机工程与应用, 2016, 52(18):257-261. doi: 10.3778/j.issn.1002-8331.1601-0316WEI Z L, ZHAO H, HAN B J, et al.Research on cooperative attack decision of unmanned combat aerial vehicles using self-adaptive grey wolf optimization[J].Computer Engineering and Application, 2016, 52(18):257-261(in Chinese). doi: 10.3778/j.issn.1002-8331.1601-0316 [8] 罗德林, 段海滨, 吴顺祥, 等.基于启发式蚁群算法的协同多目标攻击空战决策研究[J].航空学报, 2006, 27(6):1166-1170. doi: 10.3321/j.issn:1000-6893.2006.06.034LUO D L, DUAN H B, WU S X, et al.Research on air combat decision-making for cooperative multiple target attack using heuristic ant colony algorithm[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1166-1170(in Chinese). doi: 10.3321/j.issn:1000-6893.2006.06.034 [9] 郑昌文, 严平, 丁明跃.飞行器航迹规划研究现状与趋势[J].宇航学报, 2007, 28(6):1441-1446. doi: 10.3321/j.issn:1000-1328.2007.06.001ZHENG C W, YAN P, DING M Y.Research status and trend of route planning for flying vehicles[J].Journal of Astronautics, 2007, 28(6):1441-1446(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.001 [10] 王宝龙, 黄考利, 马立元, 等.基于依赖矩阵的测试性分析[J].计算机测量与控制, 2011, 19(6):1260-1265. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201106002WANG B L, HUANG K L, MA L Y, et al.Dependency matrix based testability analysis[J].Computer Measurement & Control, 2011, 19(6):1260-1265(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz201106002 [11] 王庆江, 彭军, 曾儒伟, 等.无人机对地多目标攻击决策研究[J].电光与控制, 2014, 21(11):57-61. doi: 10.3969/j.issn.1671-637X.2014.11.011WANG Q J, PENG J, ZENG R W, et al.Decision-making of UAVs for air-to-ground multi-target attacking[J].Electronics Optics & Control, 2014, 21(11):57-61(in Chinese). doi: 10.3969/j.issn.1671-637X.2014.11.011 [12] 潘峰, 陈杰, 任智平, 等.基于计算智能方法的无人机任务指派约束优化模型研究[J].兵工学报, 2009, 30(12):1706-1713. doi: 10.3321/j.issn:1000-1093.2009.12.026PAN F, CHEN J, REN Z P, et al.Research on vehicle assignment model for constraints handing based on computational intelligence algorithms[J].Acta Armamentarii, 2009, 30(12):1706-1713(in Chinese). doi: 10.3321/j.issn:1000-1093.2009.12.026 [13] CHANDLER P R, PACHTER M, SWAROOP D, et al. Complexity in UAV cooperative control[C]//The Proceedings of American Control Conference. Piscataway, NJ: IEEE Press, 2012: 1831-1836. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1023833 [14] SEYEDALI M, SEYED M M, ANDREW L.Grey wolf optimizer[J].Advances in Engineering Software, 2014, 69:46-61. doi: 10.1016/j.advengsoft.2013.12.007 [15] SEYEDALI M, SHAHRZAD S, SEYED M M, et al.Multi-objective grey wolf optimizer:A novel algorithm for multi-criterion optimization[J].Expert Systems With Application, 2016, 47:106-119. doi: 10.1016/j.eswa.2015.10.039 [16] ZHU A J, XU C P.Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC[J].Journal of Systems Engineering and Electronics, 2015, 26(2):317-328. doi: 10.1109/JSEE.2015.00037 [17] 龙文, 赵东泉, 徐松金.求解约束优化问题的改进灰狼优化算法[J].计算机应用, 2015, 35(9):2590-2595. doi: 10.3969/j.issn.1001-3695.2015.09.007LONG W, ZHAO D Q, XU S J.Improved grey wolf optimization algorithm for constrained optimization problem[J].Journal of Computer Application, 2015, 35(9):2590-2595(in Chinese). doi: 10.3969/j.issn.1001-3695.2015.09.007 [18] 魏政磊, 赵辉, 李牧东, 等.控制参数值非线性调整策略的灰狼优化算法[J].空军工程大学学报(自然科学版), 2016, 17(3):104-110. http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb201603013WEI Z L, ZHAO H, LI M D, et al.A grey wolf optimization algorithm based on nonlinear adjustment strategy of control parameter[J].Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(3):104-110(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb201603013 [19] 周敏, 李太勇.粒子群优化算法中的惯性权重值非线性调整[J].计算机工程, 2011, 37(5):68-72. doi: 10.3969/j.issn.1000-3428.2011.05.023ZHOU M, LI T Y.Nonlinear adjustment strategy of inertia weight in particle swarm optimization algorithm[J].Computer Engineering, 2011, 37(5):68-72(in Chinese). doi: 10.3969/j.issn.1000-3428.2011.05.023 [20] CHATTERJEE A, SIARRY P.Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers & Operations Research, 2006, 33(3):859-871. http://www.sciencedirect.com/science/article/pii/S0305054804002023 [21] 李牧东, 赵辉, 翁兴伟.具有广泛学习策略的回溯搜索优化算法[J].系统工程与电子技术, 2015, 37(4):958-963. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201504036LI M D, ZHAO H, WENG X W.Backtracking search optimization algorithm with comprehensive learning strategy[J].Systems Engineering and Electronics, 2015, 37(4):958-963(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201504036 [22] SOLIS F, WETS R.Minimization by random search techniques[J].Mathematics of Operations Research, 1981, 6(1):19-30. doi: 10.1287/moor.6.1.19 [23] TAL S, STEVEN J R, ANDREW G S, et al.Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms[J].Computers & Operations Research, 2006, 33(11):3252-3269. http://www.sciencedirect.com/science/article/pii/S030505480500095X