留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑壁板刚度匹配的大型飞机复合材料机翼气动弹性优化设计

肖志鹏 钱文敏 周磊

肖志鹏, 钱文敏, 周磊等 . 考虑壁板刚度匹配的大型飞机复合材料机翼气动弹性优化设计[J]. 北京航空航天大学学报, 2018, 44(8): 1629-1635. doi: 10.13700/j.bh.1001-5965.2017.0613
引用本文: 肖志鹏, 钱文敏, 周磊等 . 考虑壁板刚度匹配的大型飞机复合材料机翼气动弹性优化设计[J]. 北京航空航天大学学报, 2018, 44(8): 1629-1635. doi: 10.13700/j.bh.1001-5965.2017.0613
XIAO Zhipeng, QIAN Wenmin, ZHOU Leiet al. Aeroelastic optimization design of composite wing for large aircraft with panel stiffness matching[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1629-1635. doi: 10.13700/j.bh.1001-5965.2017.0613(in Chinese)
Citation: XIAO Zhipeng, QIAN Wenmin, ZHOU Leiet al. Aeroelastic optimization design of composite wing for large aircraft with panel stiffness matching[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1629-1635. doi: 10.13700/j.bh.1001-5965.2017.0613(in Chinese)

考虑壁板刚度匹配的大型飞机复合材料机翼气动弹性优化设计

doi: 10.13700/j.bh.1001-5965.2017.0613
详细信息
    作者简介:

    肖志鹏  男, 博士, 高级工程师。主要研究方向:飞行器结构优化设计、复合材料结构设计

    钱文敏  男, 博士, 工程师。主要研究方向:飞机气动弹性设计、分析与试验

    周磊  男, 硕士, 工程师。主要研究方向:复合材料机翼结构设计与优化

    通讯作者:

    肖志鹏, E-mail: xiaozhipeng@comac.cc

  • 中图分类号: TB330.1;V211.47

Aeroelastic optimization design of composite wing for large aircraft with panel stiffness matching

More Information
  • 摘要:

    针对大型飞机复合材料机翼,发展了一种考虑壁板刚度匹配的气动弹性优化设计方法。基于敏度算法,以结构质量最小化为目标,以壁板刚度匹配、颤振速度、翼尖变形、设计许用值、工艺性等为约束,在严重载荷状态下设计复合材料机翼结构,研究不同壁板刚度匹配要求对于优化设计结果的影响,并与传统优化设计结果进行比较。结果表明:考虑壁板刚度匹配需要付出一定的结构质量,但对局部稳定性设计、损伤容限设计和大型复合材料壁板制造有利;壁板刚度匹配设计范围对于优化设计结果影响显著,需要根据设计和制造要求合理确定;压缩设计许用值是影响复合材料机翼气动弹性优化设计的关键约束。

     

  • 图 1  复合材料左机翼结构有限元模型

    Figure 1.  Structural finite element model of left composite wing

    图 2  复合材料左机翼气动力模型

    Figure 2.  Aerodynamic model of left composite wing

    图 3  复合材料机翼在严重载荷下的变形

    Figure 3.  Deformations of composite wings under critical load conditions

    图 4  复合材料机翼上蒙皮压缩应变(Case1)

    Figure 4.  Compression strain of up skin for composite wing (Case1)

    图 5  复合材料机翼结构相对质量

    Figure 5.  Relative mass of composite wing

    图 6  复合材料机翼下蒙皮屈曲稳定性分布

    Figure 6.  Buckling stability distribution of lower skin for composite wing

    表  1  复合材料机翼优化结果在严重载荷下的变形

    Table  1.   Deformations of optimal results for composite wings under critical load conditions

    刚度比约束 翼尖相对变形/% 翼尖扭角/(°)
    Case1 Case2 Case1 Case2
    不考虑刚度比 9.07 -3.08 1.42 0.98
    km∈[0.25, 0.5] 8.28 -2.82 1.33 0.90
    km∈[0.5, 0.75] 8.66 -2.94 1.19 0.89
    km∈[0.75, 1.0] 8.80 -2.98 1.25 0.92
    下载: 导出CSV

    表  2  复合材料机翼颤振速度

    Table  2.   Flutter speed of composite wings

    刚度比约束 颤振速度/(m·s-1)
    不考虑刚度比 407.8
    km∈[0.25, 0.5] 423.1
    km∈[0.5, 0.75] 407.4
    km∈[0.75, 1.0] 406.9
    下载: 导出CSV
  • [1] 杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2] ZHANG X, LI Y.Damage tolerance and fail safety of welded aircraft wing panels[J].AIAA Journal, 2012, 43(7):1613-1623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0213382442
    [3] ROUSE M, AMBUR D R.Damage tolerance and failure analysis of a composite geodesically stiffened compression panel[J].Journal of Aircraft, 2015, 33(3):582-588. doi: 10.2514/3.46985
    [4] CHRISTOS C C, MINNETYAN L.Defect/damage tolerance of pressurized fiber composite shells[J].Composite Structures, 2001, 51(2):159-168. doi: 10.1016/S0263-8223(00)00141-0
    [5] GURDAL Z, TATTING B F, WU C K.Variable stiffness composite panels:Effects of stiffness variation on the in-plane and buckling response[J].Composites Part A, 2008, 39(5):911-922. doi: 10.1016/j.compositesa.2007.11.015
    [6] 赵群, 丁运亮, 金海波.基于压弯刚度匹配论则的复合材料加筋板结构优化设计[J].南京航空航天大学学报, 2010, 42(3):357-362. doi: 10.3969/j.issn.1005-2615.2010.03.020

    ZHAO Q, DING Y L, JIN H B.Structural optimization design of composite stiffened panels based on matching regulations of compression and bending stiffnesses[J].Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3):357-362(in Chinese). doi: 10.3969/j.issn.1005-2615.2010.03.020
    [7] 乔巍, 姚卫星.复合材料加筋板铺层优化设计的等效弯曲刚度法[J].计算力学学报, 2011, 28(1):158-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100178567

    QIAO W, YAO W X.Equivalent bending stiffness method for stacking sequence optimization of composite stiffed panel[J].Chinese Journal of Computational Mechanics, 2011, 28(1):158-162(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100178567
    [8] TERRENCE A W, DAVID K D.Induced drag reduction using aeroelastic tailoring with adaptive control surfaces[J].Journal of Aircraft, 2006, 43(1):157-164. doi: 10.2514/1.12040
    [9] GUO S J, CHENG W Y, CUI D G.Aeroelastic tailoring of composite wing structures by laminate layup optimization[J].AIAA Journal, 2006, 44(12):3146-3149. doi: 10.2514/1.20166
    [10] LIANG L, WAN Z Q, YANG C.Aeroelastic optimization on composite skins of large aircraft wings[J].Science China Technological Sciences, 2012, 55(4):1078-1085. doi: 10.1007/s11431-011-4734-0
    [11] DILLINGER J K S, KLIMMEK T, ABDALLA M M, et al.Stiffness optimization of composite wings with aeroelastic constraints[J].Journal of Aircraft, 2013, 50(4):1159-1168. doi: 10.2514/1.C032084
    [12] 周磊, 万志强, 杨超.复合材料壁板铺层参数对大展弦比机翼气动弹性优化的影响[J].复合材料学报, 2013, 30(5):195-200. doi: 10.3969/j.issn.1000-3851.2013.05.030

    ZHOU L, WAN Z Q, YANG C.Effect of laminate parameter of composite skin on aeroelastic optimization of high-aspect-wing[J].Acta Materiae Compositae Sinica, 2013, 30(5):195-200(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.030
    [13] 万志强, 杨超.大展弦比复合材料机翼气动弹性优化[J].复合材料学报, 2005, 22(3):145-149. doi: 10.3321/j.issn:1000-3851.2005.03.028

    WAN Z Q, YANG C.Aeroelastic optimization of a high-aspect-ratio composite wing[J].Acta Materiae Compositae Sinica, 2005, 22(3):145-149(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.03.028
    [14] RODDEN W P, JOHNSON E H.MSC/Nastran aeroelastic ana-lysis user's guide V68[M].Los Angeles, CA:MSC.Software Corporation, 1994:657-698.
    [15] 万志强, 杨超.设计敏度在气动弹性遗传优化中的应用[J].北京航空航天大学学报, 2006, 32(5):508-512. doi: 10.3969/j.issn.1001-5965.2006.05.003

    WAN Z Q, YANG C.Application of design sensitivity in aeroelastic genetic optimization[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5):508-512(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.05.003
    [16] 林梦鹤, 孙宪学.气动弹性剪裁中的响应值敏度[J].航空学报, 2001, 22(1):30-34. doi: 10.3321/j.issn:1000-6893.2001.01.007

    LIN M H, SUN X X.Response sensitivity in aeroelastic tailoring[J].Acta Aeronautica et Astronautica Sinica, 2001, 22(1):30-34(in Chinese). doi: 10.3321/j.issn:1000-6893.2001.01.007
    [17] 中国航空研究院.复合材料结构稳定性分析指南[M].北京:航空工业出版社, 2002:137-141.

    Chinese Institute of Aeronautics.Analysis guide for composite structural stability[M].Beijing:Aviation Industry Press, 2002:137-141(in Chinese).
    [18] 霍世慧, 王富生, 王佩艳, 等.复合材料机翼加筋壁板稳定性分析[J].应用力学学报, 2010, 27(2):423-427. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201002037

    HUO S H, WANG F S, WANG P Y, et al.Stability analysis on the ribbed panel of the composite wing[J].Chinese Journal of Applied Mechanics, 2010, 27(2):423-427(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yylxxb201002037
    [19] 金迪, 寇艳荣.复合材料加筋壁板结构选型设计[J].复合材料学报, 2016, 33(5):1142-1146. http://d.old.wanfangdata.com.cn/Periodical/fhclxb201605025

    JIN D, KOU Y R.Structural style-selection design of composite stiffened panel[J].Acta Materiae Compositae Sinica, 2016, 33(5):1142-1146(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fhclxb201605025
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  77
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 录用日期:  2017-12-15
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答