Aeroelastic optimization design of composite wing for large aircraft with panel stiffness matching
-
摘要:
针对大型飞机复合材料机翼,发展了一种考虑壁板刚度匹配的气动弹性优化设计方法。基于敏度算法,以结构质量最小化为目标,以壁板刚度匹配、颤振速度、翼尖变形、设计许用值、工艺性等为约束,在严重载荷状态下设计复合材料机翼结构,研究不同壁板刚度匹配要求对于优化设计结果的影响,并与传统优化设计结果进行比较。结果表明:考虑壁板刚度匹配需要付出一定的结构质量,但对局部稳定性设计、损伤容限设计和大型复合材料壁板制造有利;壁板刚度匹配设计范围对于优化设计结果影响显著,需要根据设计和制造要求合理确定;压缩设计许用值是影响复合材料机翼气动弹性优化设计的关键约束。
Abstract:A method of aeroelastic optimization design with consideration of panel stiffness matching was developed for the composite wing of large aircraft. The optimization was performed based on the sensitivity algorithm, and the objective was to minimize the structural mass subject to the constraints of panel stiffness matching, flutter speed, deformation at wingtip, design allowable and manufacturability. The composite wings were designed in the case of critical load conditions. The influences of various panel stiffness matching requirements on optimal design results were studied and they were compared with the conventional optimal design results. The results indicate that the structural weight will increase with consideration of panel stiffness matching. However, it has an advantage in local buckling design, damage tolerance design and manufacturing of large composite panel. The optimal design results can be significantly affected by the design ranges of panel stiffness matching, so these design ranges should be properly determined according to the requirements of design and manufacturing. The design allowable of compression is a crucial constraint of the aeroelastic optimization design for composite wing.
-
Key words:
- composite wing /
- panel stiffness matching /
- aeroelasticity /
- flutter /
- structural optimization
-
表 1 复合材料机翼优化结果在严重载荷下的变形
Table 1. Deformations of optimal results for composite wings under critical load conditions
刚度比约束 翼尖相对变形/% 翼尖扭角/(°) Case1 Case2 Case1 Case2 不考虑刚度比 9.07 -3.08 1.42 0.98 km∈[0.25, 0.5] 8.28 -2.82 1.33 0.90 km∈[0.5, 0.75] 8.66 -2.94 1.19 0.89 km∈[0.75, 1.0] 8.80 -2.98 1.25 0.92 表 2 复合材料机翼颤振速度
Table 2. Flutter speed of composite wings
刚度比约束 颤振速度/(m·s-1) 不考虑刚度比 407.8 km∈[0.25, 0.5] 423.1 km∈[0.5, 0.75] 407.4 km∈[0.75, 1.0] 406.9 -
[1] 杜善义.先进复合材料与航空航天[J].复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001DU S Y.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001 [2] ZHANG X, LI Y.Damage tolerance and fail safety of welded aircraft wing panels[J].AIAA Journal, 2012, 43(7):1613-1623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0213382442 [3] ROUSE M, AMBUR D R.Damage tolerance and failure analysis of a composite geodesically stiffened compression panel[J].Journal of Aircraft, 2015, 33(3):582-588. doi: 10.2514/3.46985 [4] CHRISTOS C C, MINNETYAN L.Defect/damage tolerance of pressurized fiber composite shells[J].Composite Structures, 2001, 51(2):159-168. doi: 10.1016/S0263-8223(00)00141-0 [5] GURDAL Z, TATTING B F, WU C K.Variable stiffness composite panels:Effects of stiffness variation on the in-plane and buckling response[J].Composites Part A, 2008, 39(5):911-922. doi: 10.1016/j.compositesa.2007.11.015 [6] 赵群, 丁运亮, 金海波.基于压弯刚度匹配论则的复合材料加筋板结构优化设计[J].南京航空航天大学学报, 2010, 42(3):357-362. doi: 10.3969/j.issn.1005-2615.2010.03.020ZHAO Q, DING Y L, JIN H B.Structural optimization design of composite stiffened panels based on matching regulations of compression and bending stiffnesses[J].Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3):357-362(in Chinese). doi: 10.3969/j.issn.1005-2615.2010.03.020 [7] 乔巍, 姚卫星.复合材料加筋板铺层优化设计的等效弯曲刚度法[J].计算力学学报, 2011, 28(1):158-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100178567QIAO W, YAO W X.Equivalent bending stiffness method for stacking sequence optimization of composite stiffed panel[J].Chinese Journal of Computational Mechanics, 2011, 28(1):158-162(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100178567 [8] TERRENCE A W, DAVID K D.Induced drag reduction using aeroelastic tailoring with adaptive control surfaces[J].Journal of Aircraft, 2006, 43(1):157-164. doi: 10.2514/1.12040 [9] GUO S J, CHENG W Y, CUI D G.Aeroelastic tailoring of composite wing structures by laminate layup optimization[J].AIAA Journal, 2006, 44(12):3146-3149. doi: 10.2514/1.20166 [10] LIANG L, WAN Z Q, YANG C.Aeroelastic optimization on composite skins of large aircraft wings[J].Science China Technological Sciences, 2012, 55(4):1078-1085. doi: 10.1007/s11431-011-4734-0 [11] DILLINGER J K S, KLIMMEK T, ABDALLA M M, et al.Stiffness optimization of composite wings with aeroelastic constraints[J].Journal of Aircraft, 2013, 50(4):1159-1168. doi: 10.2514/1.C032084 [12] 周磊, 万志强, 杨超.复合材料壁板铺层参数对大展弦比机翼气动弹性优化的影响[J].复合材料学报, 2013, 30(5):195-200. doi: 10.3969/j.issn.1000-3851.2013.05.030ZHOU L, WAN Z Q, YANG C.Effect of laminate parameter of composite skin on aeroelastic optimization of high-aspect-wing[J].Acta Materiae Compositae Sinica, 2013, 30(5):195-200(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.030 [13] 万志强, 杨超.大展弦比复合材料机翼气动弹性优化[J].复合材料学报, 2005, 22(3):145-149. doi: 10.3321/j.issn:1000-3851.2005.03.028WAN Z Q, YANG C.Aeroelastic optimization of a high-aspect-ratio composite wing[J].Acta Materiae Compositae Sinica, 2005, 22(3):145-149(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.03.028 [14] RODDEN W P, JOHNSON E H.MSC/Nastran aeroelastic ana-lysis user's guide V68[M].Los Angeles, CA:MSC.Software Corporation, 1994:657-698. [15] 万志强, 杨超.设计敏度在气动弹性遗传优化中的应用[J].北京航空航天大学学报, 2006, 32(5):508-512. doi: 10.3969/j.issn.1001-5965.2006.05.003WAN Z Q, YANG C.Application of design sensitivity in aeroelastic genetic optimization[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5):508-512(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.05.003 [16] 林梦鹤, 孙宪学.气动弹性剪裁中的响应值敏度[J].航空学报, 2001, 22(1):30-34. doi: 10.3321/j.issn:1000-6893.2001.01.007LIN M H, SUN X X.Response sensitivity in aeroelastic tailoring[J].Acta Aeronautica et Astronautica Sinica, 2001, 22(1):30-34(in Chinese). doi: 10.3321/j.issn:1000-6893.2001.01.007 [17] 中国航空研究院.复合材料结构稳定性分析指南[M].北京:航空工业出版社, 2002:137-141.Chinese Institute of Aeronautics.Analysis guide for composite structural stability[M].Beijing:Aviation Industry Press, 2002:137-141(in Chinese). [18] 霍世慧, 王富生, 王佩艳, 等.复合材料机翼加筋壁板稳定性分析[J].应用力学学报, 2010, 27(2):423-427. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201002037HUO S H, WANG F S, WANG P Y, et al.Stability analysis on the ribbed panel of the composite wing[J].Chinese Journal of Applied Mechanics, 2010, 27(2):423-427(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yylxxb201002037 [19] 金迪, 寇艳荣.复合材料加筋壁板结构选型设计[J].复合材料学报, 2016, 33(5):1142-1146. http://d.old.wanfangdata.com.cn/Periodical/fhclxb201605025JIN D, KOU Y R.Structural style-selection design of composite stiffened panel[J].Acta Materiae Compositae Sinica, 2016, 33(5):1142-1146(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fhclxb201605025