留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适于时变幅值分析的直升机黏弹减摆器模型

吴靖 胡国才 刘湘一

吴靖, 胡国才, 刘湘一等 . 适于时变幅值分析的直升机黏弹减摆器模型[J]. 北京航空航天大学学报, 2018, 44(8): 1665-1671. doi: 10.13700/j.bh.1001-5965.2017.0633
引用本文: 吴靖, 胡国才, 刘湘一等 . 适于时变幅值分析的直升机黏弹减摆器模型[J]. 北京航空航天大学学报, 2018, 44(8): 1665-1671. doi: 10.13700/j.bh.1001-5965.2017.0633
WU Jing, HU Guocai, LIU Xiangyiet al. A model of helicopter elastomeric damper for time varying amplitude analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1665-1671. doi: 10.13700/j.bh.1001-5965.2017.0633(in Chinese)
Citation: WU Jing, HU Guocai, LIU Xiangyiet al. A model of helicopter elastomeric damper for time varying amplitude analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1665-1671. doi: 10.13700/j.bh.1001-5965.2017.0633(in Chinese)

适于时变幅值分析的直升机黏弹减摆器模型

doi: 10.13700/j.bh.1001-5965.2017.0633
详细信息
    作者简介:

    吴靖  男, 博士研究生。主要研究方向:飞行器动力学

    胡国才  男, 博士, 教授, 博士生导师。主要研究方向:飞行器动力学

    通讯作者:

    胡国才, E-mail: guocaihu11@sina.com

  • 中图分类号: V275+.1;O345

A model of helicopter elastomeric damper for time varying amplitude analysis

More Information
  • 摘要:

    针对现有适于宽幅值范围的黏弹减摆器模型一般含有动幅值参量,不便用于幅值变化的直升机旋翼/机体耦合动稳定性时域分析的问题,给出了小摆振阻尼比时,黏弹减摆器在单频及双频条件下动幅值参量的计算方法,运用该方法计算系统在收敛、中性稳定及发散3种情况下的幅值曲线,较好地反映了响应幅值在时域上的变化趋势。将改进的黏弹减摆器模型用于直升机地面共振非线性时域分析,为准确获取旋翼摆振后退型响应,给出了所需桨叶激振力矩的计算方法,在不同转速不同复模量状态下,采用该方法确定的激振力矩对桨叶进行激振激出的响应幅值与预期值误差不超过6%。对摆振后退型响应进行分析可知,系统稳定时,与线性化结果相比,计入黏弹减摆器非线性后,旋翼摆振后退型响应衰减更快,其模态阻尼在时域上呈增加趋势。

     

  • 图 1  不同稳定情况下的单频时域响应

    Figure 1.  Single frequency response in time domain at different stable situations

    图 2  不同稳定情况下的双频时域响应

    Figure 2.  Double frequency response in time domain at different stable situations

    图 3  黏弹减摆器时域响应计算流程

    Figure 3.  Calculation flow of elastomeric damper time domain response

    图 4  复模量对比结果

    Figure 4.  Comparison of complex modulus

    图 5  减摆器响应幅值变化情况

    Figure 5.  Response amplitude of damper

    图 6  线性系统的摆振后退型模态特性

    Figure 6.  Regressive lagging modal features of linear system

    图 7  第1个黏弹减摆器的位移响应

    Figure 7.  Displacement response of the first elastomeric damper

    图 8  第1个黏弹减摆器的功量图

    Figure 8.  Force-displacement curves of the first elastomeric damper

    图 9  旋翼摆振后退型时域响应

    Figure 9.  Time domain response of rotor regressive lagging mode

    图 10  旋翼摆振后退型阻尼随时间变化情况

    Figure 10.  Variation of rotor regressive lagging modal damping with time

    表  1  直升机主要参数

    Table  1.   Main parameters of helicopter

    参数 数值
    桨叶片数 4
    桨叶质量/kg 42.3
    桨叶对摆振铰静矩/(kg·m) 123.7
    桨叶对摆振铰惯性矩/(kg·m2) 457
    摆振铰外伸量/m 0.23
    减摆器到摆振铰距离/m 0.35
    机体纵向当量质量/kg 2 000
    机体纵向固有频率/Hz 1
    机体纵向当量阻尼/(N·s·m-1) 1 000
    机体横向当量质量/kg 800
    机体横向固有频率/Hz 1.5
    机体横向当量阻尼/(N·s·m-1) 500
    下载: 导出CSV
  • [1] FELKER F F, LAU B H, MCLAUGHLIN S, et al.Nonlinear behavior of an elastomeric lag damper undergoing dual-frequency motion and its effect on rotor dynamics[J].Journal of the American Helicopter Society, 1987, 34(4):45-53. http://www.ingentaconnect.com/content/ahs/jahs/1987/00000032/00000004/art00005
    [2] KUNZ D L. Influence of elastomeric lag damper modeling on the predicted dynamic response of helicopter rotor systems[C]//Proceedings of 38th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1997: 1-11.
    [3] 胡国才, 侯志强.一种基于复模量的黏弹减摆器非线性VKS改进模型[J].工程力学, 2005, 22(Sup.):73-77. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX2005S1012&dbname=CJFD&dbcode=CJFQ

    HU G C, HOU Z Q.An improved nonlinear VKS model of elastomeric lag damper based on its complex modulus[J].Engineering Mechanics, 2005, 22(Sup.):73-77(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCLX2005S1012&dbname=CJFD&dbcode=CJFQ
    [4] LESIEUTRE G A.Modeling frequency-dependent longitudinal dynamic behavior of linear viscoelastic long fiber composites[J].Journal of Composite Materials, 1994, 28(18):1770-1782. doi: 10.1177/002199839402801802
    [5] LESIEUTRE G A, BIANCHINI E.Time domain modeling of linear viscoelasticity using anelastic displacement fields[J].Journal of Vibration and Acoustics, 1995, 117(4):424-430. doi: 10.1115/1.2874474
    [6] SMITH E C, GOVINDSWAMY K, BCALE M R, et al.Formulation, validation, and application of a finite element model for elastomeric lag dampers[J].Journal of the American Helicopter Society, 1996, 43(3):257-266. https://www.mendeley.com/research-papers/formulation-validation-application-finite-element-model-elastomeric-lag-dampers/
    [7] BRACKBILL C R, LESIEUTRE G A, SMITH E C, et al.Characterization and modeling of the low strain amplitude and frequency dependent behavior of elastomeric damper materials[J].Journal of the American Helicopter Society, 2000, 47(1):34-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028388022
    [8] CAUGHEY T K.Equivalent linearization techniques[J].Journal of the Acoustical Society of America, 1963, 35(11):1706-1711. doi: 10.1121/1.1918794
    [9] BOUC R. Forced vibration of mechanical system with hysteresis[C]//Proceedings of 4th Conference on Nonlinear Oscillation, 1967: 315-320.
    [10] WEN Y K.Method for random vibration of hysteretic systems[J].Journal of Applied Mechanics, 1976, 102(2):249-263. https://www.mendeley.com/research-papers/method-random-vibration-hysteretic-systems/
    [11] 李冬伟, 白鸿柏, 杨建春, 等.非线性迟滞系统建模方法[J].机械工程学报, 2005, 41(10):205-214. doi: 10.3321/j.issn:0577-6686.2005.10.040

    LI D W, BAI H B, YANG J C, et al.Modeling of a nonlinear system with hysteresis characteristics[J].Chinese Journal of Mechanical Engineering, 2005, 41(10):205-214(in Chinese). doi: 10.3321/j.issn:0577-6686.2005.10.040
    [12] GANDHI F, CHOPRA I.An analytical model for a nonlinear elastomeric lag damper and its effect on aeromechanical stability in hover[J].Journal of the American Helicopter Society, 1994, 39(4):59-69. doi: 10.4050/JAHS.39.59
    [13] 胡国才, 向锦武, 张晓谷.黏弹减摆器非线性特性对直升机前飞空中共振的影响分析[J].航空学报, 2005, 26(2):199-202. doi: 10.3321/j.issn:1000-6893.2005.02.015

    HU G C, XIANG J W, ZHANG X G.Analysis of the effect of nonlinear characteristics of elastomeric lag damper on helicopter air resonance in forward flight[J].Acta Aeronautica et Astronautica Sinica, 2005, 26(2):199-202(in Chinese). doi: 10.3321/j.issn:1000-6893.2005.02.015
    [14] 王波, 李书, 徐亚妮.不同黏弹减摆器连接的直升机地面共振分析[J].振动工程学报, 2007, 20(2):123-127. doi: 10.3969/j.issn.1004-4523.2007.02.004

    WANG B, LI S, XU Y N.Analysis of ground resonance for helicopters with different elastomeric lag damper connections[J].Journal of Vibration Engineering, 2007, 20(2):123-127(in Chinese). doi: 10.3969/j.issn.1004-4523.2007.02.004
    [15] 王波, 李书, 张晓谷.非线性叶间黏弹减摆器对直升机空中共振的影响分析[J].航空学报, 2007, 28(3):550-555. doi: 10.3321/j.issn:1000-6893.2007.03.008

    WANG B, LI S, ZHANG X G.Influence analysis of helicopter air resonance with nonlinear inter blade viscoelastic dampers[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(3):550-555(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.03.008
    [16] 卫丽君, 李书, 王波.黏弹减摆器结构参数对直升机动稳定性的影响分析[J].南京航空航天大学学报, 2010, 42(3):303-306. doi: 10.3969/j.issn.1005-2615.2010.03.008

    WEI L J, LI S, WANG B.Joint parameter analysis of helicopter dynamic stability with viscoelastic dampers[J].Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3):303-306(in Chinese). doi: 10.3969/j.issn.1005-2615.2010.03.008
    [17] 胡海岩.机械振动基础[M].北京:北京航空航天大学出版社, 2005:20-21.

    HU H Y.Fundamentals of mechanical vibration[M].Beijing:Beihang University Press, 2005:20-21(in Chinese).
    [18] 胡国才.直升机旋翼非线性等效阻尼的识别[J].航空学报, 2005, 26(3):303-307. doi: 10.3321/j.issn:1000-6893.2005.03.010

    HU G C.Nonlinear equivalent damping identification for helicopter rotor[J].Acta Aeronautica et Astronautica Sinica, 2005, 26(3):303-307(in Chinese). doi: 10.3321/j.issn:1000-6893.2005.03.010
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  84
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-16
  • 录用日期:  2017-11-23
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答