留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速精确调节稳频点的远共振线激光稳频方法

房子善 全伟 翟跃阳

房子善, 全伟, 翟跃阳等 . 快速精确调节稳频点的远共振线激光稳频方法[J]. 北京航空航天大学学报, 2018, 44(8): 1727-1732. doi: 10.13700/j.bh.1001-5965.2017.0644
引用本文: 房子善, 全伟, 翟跃阳等 . 快速精确调节稳频点的远共振线激光稳频方法[J]. 北京航空航天大学学报, 2018, 44(8): 1727-1732. doi: 10.13700/j.bh.1001-5965.2017.0644
FANG Zishan, QUAN Wei, ZHAI Yueyanget al. Off-resonance laser frequency stabilization method for fast and accurate adjustment of frequency lock points[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1727-1732. doi: 10.13700/j.bh.1001-5965.2017.0644(in Chinese)
Citation: FANG Zishan, QUAN Wei, ZHAI Yueyanget al. Off-resonance laser frequency stabilization method for fast and accurate adjustment of frequency lock points[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1727-1732. doi: 10.13700/j.bh.1001-5965.2017.0644(in Chinese)

快速精确调节稳频点的远共振线激光稳频方法

doi: 10.13700/j.bh.1001-5965.2017.0644
基金项目: 

国家自然科学基金 61227902

国家自然科学基金 61374210

国家自然科学基金 61673041

国家自然科学基金 61473268

国家自然科学基金 61503353

详细信息
    作者简介:

    房子善  男, 硕士研究生。主要研究方向:精密仪器与量子传感技术

    全伟  男, 博士, 教授, 博士生导师。主要研究方向:精密仪器与量子传感技术

    翟跃阳  男, 博士, 副教授, 博士生导师。主要研究方向:精密仪器与量子传感技术

    通讯作者:

    全伟, E-mail: quanwei@buaa.edu.cn

  • 中图分类号: V441;O433.5+4

Off-resonance laser frequency stabilization method for fast and accurate adjustment of frequency lock points

Funds: 

National Natural Science Foundation of China 61227902

National Natural Science Foundation of China 61374210

National Natural Science Foundation of China 61673041

National Natural Science Foundation of China 61473268

National Natural Science Foundation of China 61503353

More Information
  • 摘要:

    原子磁强计、激光冷却等技术需要将激光频率稳定在远离原子跃迁频率几兆赫兹的大失谐处,法拉第旋光光谱稳频方法能够实现远共振线的大失谐处的稳频,但是存在稳频点调节不便的问题。在法拉第旋光光谱稳频方法的基础上进行改进,提出了一种快速精确调节稳频点的远共振线激光稳频方法,能够在几十至几百兆赫兹范围内对稳频点频率进行快速精确的调节。基于该方法使失谐为-6.2 GHz的稳频点精确频移130 MHz,并实现频率漂移3.3 MHz/h,波动均方根值0.6 MHz/h的激光频率稳定度,满足原子磁强计对失谐及频率稳定性的要求。另外,分析了温度对该稳频方法的影响,推导了预估稳频点频率的物理参数,并将温度调节和声光调制器(AOM)调节相结合,以更好地实现在远共振线大失谐处对激光频率的长期稳定和精确控制。

     

  • 图 1  实验结构

    Figure 1.  Experimental setup

    图 2  大失谐下的法拉第旋光光谱

    Figure 2.  Faraday rotation spectra under large detuning

    图 3  使用零级光光谱和一级光光谱分别进行稳频得到的频率漂移

    Figure 3.  Frequency drift of laser stabilized by zero-order spectrum and first-order light spectrum

    图 4  使用一级光光谱稳频点进行稳频的频率漂移

    Figure 4.  Frequency drift of laser stabilized by first-order light spectrum frequency lock points

    图 5  不同温度下Cs的法拉第旋光光谱

    Figure 5.  Faraday rotation spectra of Cs at different temperatures

    图 6  第一级稳频点失谐大小随温度的变化(n=1)

    Figure 6.  Inflence of temperature on frequency drift of the first-order lock point of Faraday signal (n=1)

  • [1] DEMTRÖDER W.Laser spectroscopy:Basic concepts and instrumentation[M].1st ed.Berlin:Springer, 1996:453-462.
    [2] SU D Q, MENG T F, JI Z H, et al.Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium[J].Applied Optics, 2014, 53(30):7011-7016. doi: 10.1364/AO.53.007011
    [3] 江开军, 王谨, 李可, 等.利用原子的塞曼光谱对半导体激光器进行稳频[J].光谱学与光谱分析, 2004, 24(6):659-662. doi: 10.3321/j.issn:1000-0593.2004.06.006

    JIANG K J, WANG J, LI K, et al.Frequency stabilization of diode laser using Zeeman spectra[J].Spectroscopy and Spectral Analysis, 2004, 24(6):659-662(in Chinese). doi: 10.3321/j.issn:1000-0593.2004.06.006
    [4] GIMA T, KATO H, HONDA T, et al.Modulation-free frequency stabilization based on polarization-split Sagnac loop[J].IEEE Photonics Technology Letters, 2013, 25(11):1031-1034. doi: 10.1109/LPT.2013.2259475
    [5] SUN J F, YIN S Q, XU Z, et al.Optimization of polarization spectroscopy for rubidium D lines[J].Chinese Physics B, 2013, 22(2):271-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013040900008201
    [6] TIWARI V B, SINGH S, MISHRA S R, et al.Laser frequency stabilization using Doppler-free bi-polarization spectroscopy[J].Optics Communications, 2006, 263(2):249-255. doi: 10.1016/j.optcom.2006.01.028
    [7] DANG H B, MALOOF A C, ROMALIS M V.Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J].Applied Physics Letters, 2010, 97(15):151110. doi: 10.1063/1.3491215
    [8] FANG J, WANG T, ZHANG H, et al.Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping[J].Review of Scientific Instruments, 2014, 85(12):123104. doi: 10.1063/1.4902567
    [9] BARBOZA P M T, NASCIMENTO G G, ARAU'JO M O, et al.Stabilization of a laser on a large-detuned atomic-reference frequency by resonant interferometry[J].Journal of Physics B:Atomic, Molecular and Optical Physics, 2016, 49(8):085401. doi: 10.1088/0953-4075/49/8/085401
    [10] MARCHANT A L, HÄNDEL S, WILES T P, et al.Off-resonance laser frequency stabilization using the Faraday effect[J].Optics Letters, 2011, 36(1):64-66. doi: 10.1364/OL.36.000064
    [11] QUAN W, LI Y, LI R, et al.Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy[J].Applied Optics, 2016, 55(10):2503-2507. doi: 10.1364/AO.55.002503
    [12] KEMP S L, HUGHES I G, CORNISH S L.An analytical model of off-resonant Faraday rotation in hot alkali metal vapours[J].Journal of Physics B:Atomic, Molecular and Optical Physics, 2011, 44(23):235004. doi: 10.1088/0953-4075/44/23/235004
    [13] SIDDONS P, ADAMS C S, HUGHES I G.Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms[J].Journal of Physics B:Atomic, Molecular and Optical Physics, 2009, 42(17):175004. doi: 10.1088/0953-4075/42/17/175004
    [14] SIDDONS P, ADAMS C S, GE C, et al.Absolute absorption on rubidium D lines:Comparison between theory and experiment[J].Journal of Physics B:Atomic, Molecular and Optical Physics, 2008, 41(15):155004. doi: 10.1088/0953-4075/41/15/155004
    [15] ALCOCK C B, ITKIN V P, HORRIGAN M K.Vapour pressure equations for the metallic elements:298-2500 K[J].Canadian Metallurgical Quarterly, 1984, 23(3):309-313. doi: 10.1179/cmq.1984.23.3.309
    [16] DONLEY E A, HEAVNER T P, LEVI F, et al.Double-pass acousto-optic modulator system[J].Review of Scientific Instruments, 2005, 76(6):063112. doi: 10.1063/1.1930095
  • 加载中
图(6)
计量
  • 文章访问数:  640
  • HTML全文浏览量:  81
  • PDF下载量:  431
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 录用日期:  2017-12-01
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答