留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石13C核子定位用参数可调动态解耦序列

张刚源 袁珩 范鹏程

王彬, 唐晓青. 基于知识模型的产品设计方案失效风险评估[J]. 北京航空航天大学学报, 2008, 34(7): 763-768.
引用本文: 张刚源, 袁珩, 范鹏程等 . 金刚石13C核子定位用参数可调动态解耦序列[J]. 北京航空航天大学学报, 2018, 44(8): 1733-1738. doi: 10.13700/j.bh.1001-5965.2017.0652
Wang Bin, Tang Xiaoqing. Evaluating failure risk for product design scheme based on knowledge model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(7): 763-768. (in Chinese)
Citation: ZHANG Gangyuan, YUAN Heng, FAN Pengchenget al. Adjustable-parameter dynamical decoupling protocol for 13C nuclear addressing in diamond[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1733-1738. doi: 10.13700/j.bh.1001-5965.2017.0652(in Chinese)

金刚石13C核子定位用参数可调动态解耦序列

doi: 10.13700/j.bh.1001-5965.2017.0652
基金项目: 

国家自然科学基金 61773046

国家自然科学基金 61403014

国家自然科学基金 61227902

国家重点研发计划 2016YFB0501604

详细信息
    作者简介:

    张刚源  男, 硕士研究生。主要研究方向:金刚石色心量子态操控

    袁珩  男, 博士, 副教授, 硕士生导师。主要研究方向:金刚石色心量子态操控、量子传感、微纳芯片

    范鹏程  男, 博士研究生。主要研究方向:金刚石色心量子态操控、金刚石色心量子传感

    通讯作者:

    袁珩, E-mail: hengyuan@buaa.edu.cn

  • 中图分类号: TH744;O413.2

Adjustable-parameter dynamical decoupling protocol for 13C nuclear addressing in diamond

Funds: 

National Natural Science Foundation of China 61773046

National Natural Science Foundation of China 61403014

National Natural Science Foundation of China 61227902

National Key R & D Program of China 2016YFB0501604

More Information
  • 摘要:

    针对金刚石内13C核自旋的逐个定位,提出了一种非均匀分布周期内对称的动态解耦序列--可调动态解耦(APDD)序列。针对该序列,进行了理论推导和仿真分析;并就13C核自旋定位精度指标,与目前金刚石内原子量子态操控使用最为广泛的CPMG(Carr-Purcell-Meiboom-Gill)脉冲序列和XY4序列进行了比较。结果表明,相比于CPMG序列与XY4序列,APDD序列可将单个13C核自旋的定位精度提高6.27倍。进一步研究表明,在单个周期内比值τ1/τ介于0.51~0.58范围为APDD序列核子定位最优工作条件。因此,APDD序列能被用于控制毗邻金刚石中NV-色心的核自旋,并且在量子信息和量子探测器领域有着重要的应用。

     

  • 图 1  APDD脉冲序列单周期内脉冲分布示意图

    Figure 1.  Schematic of pulse distribution of APDD pulse protocol in single cycle

    图 2  NV-色心金刚石模型

    Figure 2.  NV- color center diamond model

    图 3  CPMG/XY4序列与APDD序列核子定位比较

    Figure 3.  Comparison of nuclear addressing between CPMG/XY4 and APDD protocols

    图 4  CPMG/XY4序列和APDD序列线宽条形图

    Figure 4.  Bar chart of linewidth of CPMG/XY4 and APDD protocols

    图 5  APDD序列线宽变化

    Figure 5.  APDD protocols linewidth variation

  • [1] ZHANG C, YUAN H, TANG Z, et al.Inertial rotation measurement with atomic spins:From angular momentum conservation to quantum phase theory[J].Applied Physics Reviews, 2016, 3(4):041305. doi: 10.1063/1.4972187
    [2] BIGNEY E.Flawed to perfection:Ultra-pure synthetic diamonds offer advances in fields from quantum computing to cancer diagnostics[J].Nature News, 2014, 505:472-474. doi: 10.1038/505472a
    [3] ALEGRE T P M, SANTORI C, MEDEIROS-RIBEIRO G, et al.Polarization-selective excitation of nitrogen vacancy centers in diamond[J].Physical Review B, 2007, 76(16):165205. doi: 10.1103/PhysRevB.76.165205
    [4] NEUMANN P, BECK J, STEINER M, et al.Single-shot readout of a single nuclear spin[J].Science, 2010, 329(5991):542-544. doi: 10.1126/science.1189075
    [5] ALBRECHT A, PLENIO M B.Filter design for hybrid spin gates[J].Physical Review A, 2015, 92(2):02340.
    [6] LONDON P, SCHEUER J, CAI J M, et al.Detecting and polarizing nuclear spins with double resonance on a single electron spin[J].Physical Review Letters, 2013, 111(6):467-473.
    [7] CYWINSKI L, LUTCHYN R M, NAVE C P, et al.How to enhance dephasing time in superconducting qubits[J].Physical Review B, 2008, 77(17):998-1002.
    [8] YUGE T, SASAKI S, HIRAYAMA Y.Measurement of the noise spectrum using a multiple-pulse sequence[J].Physical Review Letters, 2011, 107(17):170504. doi: 10.1103/PhysRevLett.107.170504
    [9] MEIBOOM S, GILL D.Modified spin-echo method for measuring nuclear relaxation times[J].The Review of Scientific Instruments, 1958, 29(8):688-691. doi: 10.1063/1.1716296
    [10] MIZUOCHI N, ISOYA J, NⅡTSUMA J, et al.Isotope effects between hydrogen and deuterium microwave plasmas on chemical vapor deposition homoepitaxial diamond growth[J].Journal of Applied Physics, 2007, 101(10):103501. doi: 10.1063/1.2727380
    [11] ZHAO N, HONERT J, SCHMID B, et al.Sensing single remote nuclear spins[J].Nature Nanotechnology, 2012, 7:657-662. doi: 10.1038/nnano.2012.152
    [12] ZHAO N, WRACHTRUP J, LIU R B.Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath[J].Physical Review A, 2014, 90(3):032319. doi: 10.1103/PhysRevA.90.032319
    [13] VAN DER SAR T, WANG Z H, BLOK M S, et al.Decoherence-protected quantum gates for a hybrid solid-state spin register[J].Nature, 2012, 484(7392):82-86. doi: 10.1038/nature10900
    [14] TAMINIAU T H, WAGENAAR J J, VAN DER SAR T, et al.Detection and control of individual nuclear spins using a weakly coupled electron spin[J].Physical Review Letters, 2012, 109(13):137602. doi: 10.1103/PhysRevLett.109.137602
    [15] KOLKOWITZ S, UNTERREITHMEIER Q P, BENNETT S D, et al.Sensing distant nuclear spins with a single electron spin[J].Physical Review Letters, 2012, 109(13):137601. doi: 10.1103/PhysRevLett.109.137601
    [16] ZHANG N, ZHANG C, XU L X, et al.Microwave magnetic field coupling with nitrogen-vacancy center ensembles in diamond with high homogeneity[J].Applied Magnetic Resonance, 2016, 47(6):589-599. doi: 10.1007/s00723-016-0777-5
    [17] WANG Z Y, HAASE J F, CASANOVA J, et al.Positioning nuclear spins in interacting clusters for quantum technologies and bio-imaging[J].Physical Review B, 2016, 93(17):174104. doi: 10.1103/PhysRevB.93.174104
    [18] ZHAO N, HO S W, LIU R B.Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths[J].Physical Review B, 2012, 85(11):115303. doi: 10.1103/PhysRevB.85.115303
    [19] ÁLVAREZ G A, AJOY A, PENG X, et al.Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin-bath[J].Physical Review A, 2010, 82(4):042306. doi: 10.1103/PhysRevA.82.042306
    [20] WANG Z H, LANGE G, RISTÈD, et al.Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond[J].Physical Review B, 2012, 85(15):155204. doi: 10.1103/PhysRevB.85.155204
  • 期刊类型引用(11)

    1. 闫富乾,石致远,王立闻. 基于改进灰狼算法的柔性作业车间动态节能分批调度问题. 现代制造工程. 2024(01): 24-32+161 . 百度学术
    2. 闫富乾,陈浩杰,丁国富,孟祥印,张剑. 求解柔性分批调度问题的双层搜索框架入侵杂草算法. 计算机集成制造系统. 2023(02): 556-567 . 百度学术
    3. 张森悦,隋学梅,李一波. 基于自适应樽海鞘算法的多无人机任务分配. 吉林大学学报(理学版). 2022(05): 1123-1132 . 百度学术
    4. 黄刚,李军华. 基于AC-DSDE进化算法多UAVs协同目标分配. 自动化学报. 2021(01): 173-184 . 百度学术
    5. 刘森琪,王鸿,于宁宇,郝礼楷. 基于信息素启发狼群算法的UAV集群火力分配. 北京航空航天大学学报. 2021(02): 297-305 . 本站查看
    6. 王昭,华翔. 一种改进多目标灰狼优化算法的多无人机任务分配. 西安工业大学学报. 2021(01): 94-102 . 百度学术
    7. 郑书坚,赵文杰,钟永建,贺敏,赵文龙. 面向多目标拦截问题的协同任务分配方法研究. 空天防御. 2021(03): 55-64 . 百度学术
    8. 韩统,崔明朗,张伟,陈国明,王骁飞. 多无人机协同空战机动决策. 兵器装备工程学报. 2020(04): 117-123 . 百度学术
    9. 游航航,韩其松,余敏建,龙宏志,杨海燕,李朋永. 基于AIGWO-IMMUKF的目标跟踪算法. 北京航空航天大学学报. 2020(10): 1826-1833 . 本站查看
    10. 黄长强. 未来空战过程智能化关键技术研究. 航空兵器. 2019(01): 11-19 . 百度学术
    11. 王荣巍,何锋,周璇,鲁俊,李二帅. 面向无人机蜂群的航电云多层任务调度模型. 航空学报. 2019(11): 221-232 . 百度学术

    其他类型引用(9)

  • 加载中
图(5)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  187
  • PDF下载量:  514
  • 被引次数: 20
出版历程
  • 收稿日期:  2017-10-23
  • 录用日期:  2017-12-15
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答