-
摘要:
应用轻量化材料如高强度钢和铝、镁合金等来替代普通钢制造汽车承载构件已成为发展趋势。本文以工业铝合金为材料设计了一种新型的轻型城郊客车车架,并建立有限元模型进行了多种典型工况的仿真分析。首先,基于CATIA进行了客车车架各零部件的设计,整体装配与校核;然后,通过简化模型、模拟连接等,在ANSYS Workbench中建立了合理的车架-悬架有限元模型;最后,模拟客车满载弯曲、制动等5种典型工况施加载荷与边界条件,进行有限元仿真,仿真结果表明该铝合金车架能够满足各典型工况的强度和刚度性能要求。
Abstract:Lightweight materials such as high-strength steel, aluminum alloy or magnesium alloy applied as substitutions of plain steel to manufacture of bearing structures on vehicle have been an obvious tendency. Using industrial aluminum alloy as material, a new light bus frame was designed in this paper, and then finite element simulations under multiple typical conditions were implemented based on the reasonable finite element model. First, all the components of the frame were designed, assembled and checked in CATIA. Secondly, the frame-suspension finite element model was established in ANSYS Workbench after model simplification, connections simulation, etc. Finally, finite element simulations under totally five kinds of typical conditions such as full-load bending and emergency braking were accomplished, and the results indicate that the strength and stiffness of this new bus frame can satisfy the requirements of the typical conditions.
-
Key words:
- lightweight /
- aluminum alloy /
- bus frame /
- structural design /
- finite element
-
表 1 车架总体参数
Table 1. General parameters of frame
mm 参数 数值 轴距 4 000 轮距 1 850 前悬 1 050 后悬 1 950 前悬架板簧长度 1 050 后悬架板簧长度 1 500 纵梁长度 7 400 横梁最大长度 2 000 表 2 Al 6061-T6/T651的材料参数
Table 2. Material parameters of Al 6061-T6/T651
参数 数值 密度/(kg·m-3) 2 700 弹性模量/GPa 68.95 剪切模量/GPa 26.0 泊松比 0.33 极限强度/MPa 310.3 屈服强度/MPa 276 抗剪强度/MPa 207 表 3 车架中不同接触关系的主要设置
Table 3. Main setting of various connections on frame
装配关系 接触对象 接触类型 算法 间隙调整 焊接 线-面 绑定 多点约束法 忽略间隙与穿透 焊接 面-面 绑定 罚函数法 调至恰好接触 摩擦接触 线-面,面-面 粗糙 增强拉格朗日法 调至恰好接触 固定 线-面 绑定 多点约束法 忽略间隙与穿透 表 4 车架承受的簧载质量
Table 4. Sprung mass loading on frame
载荷类型 质量/kg 发动机总成 335 车身、驾驶室及其附件 758 动力总成 254 满座乘员、座椅及地板 1 325 油箱及油 135 水箱及水 110 行李舱 230 车架自重 371.2 表 5 各工况的等效应力和总变形量最大值
Table 5. Maximum equivalent stress and total deformation under various loading conditions
工况编号 实际工况 最大等效应力/MPa 最大总变形量/mm a 弯曲 129.21 6.294 b 弯扭联合 176.79 14.537 c 加速 131.19 6.943 d 紧急制动 159.61 5.114 e 紧急转弯 135.98 7.240 -
[1] 范子杰, 桂良进, 苏瑞意.汽车轻量化技术的研究与进展[J].汽车安全与节能学报, 2014, 5(1):1-16. doi: 10.3969/j.issn.1674-8484.2014.01.001FAN Z J, GUI L J, SU R Y.Research and development of automotive lightweight technology[J].Journal of Automotive Safety and Energy, 2014, 5(1):1-16(in Chinese). doi: 10.3969/j.issn.1674-8484.2014.01.001 [2] 郑晖, 赵曦雅.汽车轻量化及铝合金在现代汽车生产中的应用[J].锻压技术, 2016, 41(2):1-6. http://d.old.wanfangdata.com.cn/Periodical/dyjs201602001ZHENG H, ZHAO X Y.Lightweight automobile and application of aluminum alloys in modern automobile production[J].Forging and Stamping Technology, 2016, 41(2):1-6(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dyjs201602001 [3] 史东杰, 王连波, 刘对宾, 等.汽车底盘轻量化材料与工艺[J].热加工工艺, 2016, 45(3):16-18. http://xueshu.baidu.com/s?wd=paperuri%3A%2870cb61b21a0cb3531380ac7af0473303%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3DSJGY201603004%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=9200825766725872685SHI D J, WANG L B, LIU D B, et al.Materials and technology of automobile chassis lightweight[J].Hot Working Technology, 2016, 45(3):16-18(in Chinese). http://xueshu.baidu.com/s?wd=paperuri%3A%2870cb61b21a0cb3531380ac7af0473303%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3DSJGY201603004%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=9200825766725872685 [4] 孙文龙. 轻质材料应用于汽车轮毂的轻量化技术研究[D]. 北京: 北京理工大学, 2016: 25-54.SUN W L. The research of lightweight technology of lightweight materials applied in electric vehicle hub[D]. Beijing: Beijing Institute of Technology, 2016: 25-54(in Chinese). [5] 牛妍妍. 新能源客车轻量化技术路径研究[D]. 长春: 吉林大学, 2016: 18-23.NIU Y Y. Lightweight technology path analysis for new energy bus[D]. Changchun: Jilin University, 2016: 18-23(in Chinese). [6] PARK J H, KIM K J.Optimal design of camber link component for lightweight automobile using CAE(Computer Aided Engineering)[J].International Journal of Precision Engineering and Manufacturing, 2013, 14(8):1433-1437. doi: 10.1007/s12541-013-0193-9 [7] PARK J H, KIM S K, CHIO B I, et al.Optimal design of rear chassis components for lightweight automobile using design of experiment[J].Materialwissenschaft und Werkstofftechnik, 2010, 41(5):391-397. doi: 10.1002/mawe.v41:5 [8] HEULER P, BIRK O.Durability assessment of automotive aluminum parts[J].Fatigue & Fracture of Engineering Materials & Structures, 2002, 25(12):1135-1148. http://cn.bing.com/academic/profile?id=abb707f03765e874f0e4c091166646c2&encoded=0&v=paper_preview&mkt=zh-cn [9] NAM J S, SHIN H W, CHOI G J.Durability prediction for automobile aluminum front subframe using nonlinear models in virtual test simulations[J].International Journal of Automotive Technology, 2014, 15(4):593-601. doi: 10.1007/s12239-014-0062-2 [10] 王华武, 郝守海, 徐茂林, 等.焊接式全铝客车车身设计开发[J].汽车科技, 2015(5):35-40. doi: 10.3969/j.issn.1005-2550.2015.05.007WANG H W, HAO S H, XU M L, et al.Welded aluminum bus body design development[J].Auto Sci-tech, 2015(5):35-40(in Chinese). doi: 10.3969/j.issn.1005-2550.2015.05.007 [11] 刘艳, 傅小燕, 陈飞宏.基于侧翻碰撞分析的铝合金客车车身型材优化设计[J].客车技术与研究, 2015, 16(6):16-19. doi: 10.3969/j.issn.1006-3331.2015.06.005LIU Y, FU X Y, CHEN F H.Optimization design for coach body aluminum extrusion profile based on rollover crash analysis[J].Bus & Coach Technology and Research, 2015, 16(6):16-19(in Chinese). doi: 10.3969/j.issn.1006-3331.2015.06.005 [12] 全国有色金属标准化技术委员会. 一般工业用铝及铝合金挤压型材: GB/T 6892-2015[S]. 北京: 中国国家标准化管理委员会, 2015.National Technical Committee for the Standardization of Non-ferrous Metals. Wrought aluminum and aluminum alloys extruded profiles for general engineering: GB/T 6892-2015[S]. Beijing: China National Standardization Management Committee, 2015(in Chinese). [13] 陈家瑞.汽车构造[M].3版.北京:机械工业出版社, 2009:161-162.CHEN J R.Automobile structure[M].3rd ed.Beijing:China Machine Press, 2009:161-162(in Chinese). [14] 万明磊. 基于ANSYS Workbench的电动城市客车车架轻量化研究[D]. 青岛: 青岛大学, 2015: 14-16.WAN M L. Lightweight analysis of electrical urban bus frame based on ANSYS Workbench[D]. Qingdao: Qingdao University, 2015: 14-16(in Chinese). [15] 徐和林. 7410型客车车架的有限元计算及振动与疲劳分析[D]. 兰州: 兰州理工大学, 2012: 9-11.XU H L. Finite element calculation, vibration and fatigue analysis of 7410-type bus frame[D]. Lanzhou: Lanzhou University of Technology, 2012: 9-11(in Chinese). [16] 柴山, 郭明, 徐上海, 等.车辆钢板弹簧悬架的有限元模型[J].江苏大学学报(自然科学版), 2015, 36(1):16-22. doi: 10.3969/j.issn.1671-7775.2015.01.004CHAI S, GUO M, XU S H, et al.Finite element models for vehicle leaf spring suspensions[J].Journal of Jiangsu University(Natural Science Edition), 2015, 36(1):16-22(in Chinese). doi: 10.3969/j.issn.1671-7775.2015.01.004 [17] 周美施, 张铁柱, 尹怀仙, 等.基于nCode Design-Life的电动客车车架疲劳寿命分[J].青岛大学学报(工程技术版), 2015, 30(4):96-100. http://d.old.wanfangdata.com.cn/Periodical/qddxxb201504018ZHOU M S, ZHANG T Z, YIN H X, et al.Fatigue life analysis of frame based on nCode Design-Life[J].Journal of Qingdao University(Engineering & Technology), 2015, 30(4):96-100(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/qddxxb201504018