留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于仿真的小型数据中心气流组织研究

周成龙 杨春信 王超 张兴娟

周成龙, 杨春信, 王超, 等 . 基于仿真的小型数据中心气流组织研究[J]. 北京航空航天大学学报, 2018, 44(8): 1682-1692. doi: 10.13700/j.bh.1001-5965.2017.0658
引用本文: 周成龙, 杨春信, 王超, 等 . 基于仿真的小型数据中心气流组织研究[J]. 北京航空航天大学学报, 2018, 44(8): 1682-1692. doi: 10.13700/j.bh.1001-5965.2017.0658
ZHOU Chenglong, YANG Chunxin, WANG Chao, et al. Simulation-based research on airflow organization for small data center[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1682-1692. doi: 10.13700/j.bh.1001-5965.2017.0658(in Chinese)
Citation: ZHOU Chenglong, YANG Chunxin, WANG Chao, et al. Simulation-based research on airflow organization for small data center[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1682-1692. doi: 10.13700/j.bh.1001-5965.2017.0658(in Chinese)

基于仿真的小型数据中心气流组织研究

doi: 10.13700/j.bh.1001-5965.2017.0658
基金项目: 

国家“973”计划 2012CB720100

详细信息
    作者简介:

    周成龙  男, 博士研究生。主要研究方向:环控生保系统方案设计与气流组织研究

    杨春信  男, 博士, 教授, 博士生导师。主要研究方向:环境控制与气液两相流

    王超  女, 学士, 工程师。主要研究方向:飞行器环境控制仿真及地面模拟验证技术

    张兴娟  女, 博士, 副教授。主要研究方向:飞行器环境控制仿真及地面模拟验证技术

    通讯作者:

    杨春信, E-mail: yangchunxin@sina.com

  • 中图分类号: TB657.2

Simulation-based research on airflow organization for small data center

Funds: 

National Basic Research Program of China 2012CB720100

More Information
  • 摘要:

    为了实现小型数据中心能在办公室环境中运行而降低运行成本这一实际需求,提出了蒸汽压缩制冷系统与服务器融合封闭的降噪与制冷的一体化设计方案。在关键部件——轴流风扇和蒸发器的仿真策略得到验证的基础上,建立了系统气流组织仿真模型以分析箱体内流动与换热特征,以方差和信息熵构建不均匀性评价指标以评估不同风扇排布方式对服务器温度场均匀性的影响,讨论了发热密度增大时的应对策略。结果表明,轴流风扇不均匀的动量驱动导致了蒸发器内不均匀的流动与换热,所设计的降噪制冷系统可以使服务器的排风温度控制在21.6~22.2℃,增加蒸发器的散热风扇可以整体上改善温度场均匀性,发热密度增大时增大服务器的通风量是降低排风温度的有效措施。

     

  • 图 1  降噪制冷方案示意图

    Figure 1.  Schematic diagram of noise reduction refrigeration scheme

    图 2  降噪制冷箱结构

    Figure 2.  Configuration of noise reduction refrigeration system

    图 3  轴流风扇三维模型及计算网格

    Figure 3.  3D model and computational mesh of axial flow fan

    图 4  轴流风扇流量特性曲线对比

    Figure 4.  Comparison of flow characteristic curve of axial flow fan

    图 5  蒸发器翅片结构

    Figure 5.  Fin configuration of evaporator

    图 6  流量特性和换热特性对比

    Figure 6.  Comparison of flow characteristic and heat transfer characteristic

    图 7  xy方向的压降特性

    Figure 7.  Pressure loss characteristic of x and y direction

    图 8  制冷实验

    Figure 8.  Refrigeration experiment

    图 9  系统仿真实验验证

    Figure 9.  Validation of system experiment simulation

    图 10  待分析截面位置分布

    Figure 10.  Location distribution of sections to be analyzed

    图 11  截面y1~y6的流线-温度分布

    Figure 11.  Streamline-temperature distribution of sections y1-y6

    图 12  截面z1的速度矢量

    Figure 12.  Velocity vector in section z1

    图 13  蒸发器上表面速度分布

    Figure 13.  Velocity distribution of upper surface of evaporator

    图 14  蒸发器中线的速度与换热强度分析

    Figure 14.  Analysis of velocity and heat transfer strength in middle line of evaporator

    图 15  4种气流组织方案

    Figure 15.  Four airflow organization schemes

    图 16  4种方案截面y3的温度和速度矢量云图

    Figure 16.  Temperature and velocity vector contours of section y3 of four schemes

    图 17  4种方案蒸发器中线上的速度和换热强度

    Figure 17.  Velocity and heat transfer strength in middle line of evaporator of four schemes

    图 18  气流组织形式对排风温度的影响

    Figure 18.  Influence of airflow organization form on exhaust temperature

    图 19  4种气流组织方案的温度场不均匀性评价

    Figure 19.  Evaluation of temperature field inhomogeneity of four air flow organization schemes

    图 20  不同调节方案的排风温度

    Figure 20.  Exhaust temperature of different control schemes

    表  1  小型数据中心的性能参数

    Table  1.   Performance parameters of a small data center

    参数 数值
    刀片服务器数量 5
    噪声级/dB 75
    刀片服务器尺寸/(mm×mm×mm) 40×170×720
    单个刀片服务器发热量/W 132
    刀片服务器通风量/(m3·s-1) 0.007
    下载: 导出CSV

    表  2  轴流风扇性能参数

    Table  2.   Performance parameter of axial flow fan

    参数 数值
    尺寸/(mm×mm×mm) 150×150×51
    转速/(r·min-1) 2 800
    电压/V 220
    电流/A 0.22
    下载: 导出CSV

    表  3  网格无关性验证

    Table  3.   Grid independence verification

    网格数 流量/(m3·s-1) 相对偏差/%
    171 015 0.080 1 2.7
    301 245 0.083 1 0.9
    402 384 0.081 8 0.6
    下载: 导出CSV

    表  4  蒸发器仿真策略

    Table  4.   Simulation strategy of evaporator

    控制方程 层流模型
    流体压缩性 不可压
    压力速度耦合 SIMPLE
    动量离散格式 二阶迎风
    能量离散格式 QUICK
    下载: 导出CSV
  • [1] 刘明, 刘静.可降低数据中心热管理能耗的嵌入机柜式冷却方法及其EXERGY分析[J].电子机械工程, 2009, 25(2):1-7. doi: 10.3969/j.issn.1008-5300.2009.02.001

    LIU M, LIU J.Rack-embeded cooling strategy and its exergy analysis for reduction of power consumption in thermal management data center[J].Electro-mechanical Engineering, 2009, 25(2):1-7(in Chinese). doi: 10.3969/j.issn.1008-5300.2009.02.001
    [2] ORÓ E, DEPOORTER V, GARCIA A, et al.Energy efficiency and renewable energy integration in data centres:Strategies and modelling review[J].Renewable and Sustainable Energy Reviews, 2015, 42:429-445. doi: 10.1016/j.rser.2014.10.035
    [3] PASSCHIER-VERMEER W, PASSCHIER W F.Noise exposure and public health[J].Environmental Health Perspectives, 2000, 108(Suppl.1):123-131. http://d.old.wanfangdata.com.cn/Periodical/zhcmj200715003
    [4] CRIPPEN M J, ALO R K, CHAMPION D, et al.BladeCenter packaging, power, and cooling[J].IBM Journal of Research & Development, 2005, 49(6):887-904. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210316128/
    [5] DESAI D M, BRADICICH T M, CHAMPION D, et al.BladeCenter system overview[J].IBM Journal of Research & Development, 2005, 49(6):809-821. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210316129/
    [6] PATEL C D, BASH C E, BELADY C, et al. Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications[C]//Proceedings of IPACK. New York: ASME, 2001: 8-13.
    [7] PATEL C D, SHARMA R, BASH C E, et al. Thermal considerations in cooling large scale high compute density data centers[C]//The 8th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronic Systems, 2002. Piscataway, NJ: IEEE Press, 2002: 767-776. https://ieeexplore.ieee.org/document/1012532/
    [8] FAKHIM B, BEHNIA M, ARMFIELD S W, et al.Cooling solutions in an operational data centre:A case study[J].Applied Thermal Engineering, 2011, 31(14):2279-2291. http://www.sciencedirect.com/science/article/pii/S1359431111001578
    [9] SCHMIDT R, CRUZ E. Cluster of high powered racks within a raised floor computer data center: Effect of perforated tile flow distribution on rack inlet air temperatures[C]//ASME 2003 International Mechanical Engineering Congress and Exposition. New York: ASME, 2003: 245-262. https://www.mendeley.com/research-papers/cluster-highpowered-racks-within-raisedfloor-computer-data-center-effect-perforated-tile-flow-distri/
    [10] ANASYS Inc. ANSYS Version 15 user guide[Z]. Canonsburg: ANASYS Inc., 2014.
    [11] ZHOU J H, YANG C X.Design and simulation of the CPU fan and heat sinks[J].IEEE Transactions on Components and Packaging Technologies, 2008, 31(4):890-903. doi: 10.1109/TCAPT.2008.2006188
    [12] ZHOU J H, YANG C X.Parametric design and numerical simulation of the axial-flow fan for electronic devices[J].IEEE Transactions on Components and Packaging Technologies, 2010, 33(2):287-298. doi: 10.1109/TCAPT.2010.2040069
    [13] MISSIRLIS D, YAKINTHOS K, PALIKARAS A, et al.Experimental and numerical investigation of the flow field through a heat exchanger for aero-engine applications[J].International Journal of Heat and Fluid Flow, 2005, 26(3):440-458. doi: 10.1016/j.ijheatfluidflow.2004.10.003
    [14] YAKINTHOS K, MISSIRLIS D, PALIKARAS A, et al.Optimization of the design of recuperative heat exchangers in the exhaust nozzle of an aero engine[J].Applied Mathematical Modelling, 2007, 31(11):2524-2541. doi: 10.1016/j.apm.2006.10.008
    [15] KRITIKOS K, ALBANAKIS C, MISSIRLIS D, et al.Investigation of the thermal efficiency of a staggered elliptic-tube heat exchanger for aeroengine applications[J].Applied Thermal Engineering, 2010, 30(2):134-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0219663043
    [16] DIONISIO A, MENEZES R, MENDES D A. Entropy and uncertainty analysis in financial markets[J/OL]. ArXiv E-prints, 2007: 0709. 0668. http://adsabs.harvard.edu/abs/2007arXiv0709.0668D.
    [17] PANDEY B. A relation between information entropy and variance[J/OL]. ArXiv E-prints, 2016: 1607. 02768. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016arXiv160702768P&link_type=ABSTRACT.
    [18] KANG H C, KIM M H.Effect of strip location on the air-side pressure drop and heat transfer in strip fin-and-tube heat exchanger[J].International Journal of Refrigeration, 1999, 22(4):302-312. doi: 10.1016/S0140-7007(98)00062-0
    [19] QU Z G, TAO W Q, HE Y L.Three-dimensional numerical simulation on laminar heat transfer and fluid flow characteristics of strip fin surface with X-arrangement of strips[J].Journal of Heat Transfer, 2004, 126(5):697-707. doi: 10.1115/1.1798971
    [20] ASHRAE Technical Committee. Thermal guidelines for data processing environments-expanded data center classes and usage guidance: ASHRAE T C. 9. 9(2011)[S]. Atlanta: ASHRAE, 2011.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  70
  • PDF下载量:  564
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 录用日期:  2018-01-19
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答