-
摘要:
为了实现小型数据中心能在办公室环境中运行而降低运行成本这一实际需求,提出了蒸汽压缩制冷系统与服务器融合封闭的降噪与制冷的一体化设计方案。在关键部件——轴流风扇和蒸发器的仿真策略得到验证的基础上,建立了系统气流组织仿真模型以分析箱体内流动与换热特征,以方差和信息熵构建不均匀性评价指标以评估不同风扇排布方式对服务器温度场均匀性的影响,讨论了发热密度增大时的应对策略。结果表明,轴流风扇不均匀的动量驱动导致了蒸发器内不均匀的流动与换热,所设计的降噪制冷系统可以使服务器的排风温度控制在21.6~22.2℃,增加蒸发器的散热风扇可以整体上改善温度场均匀性,发热密度增大时增大服务器的通风量是降低排风温度的有效措施。
-
关键词:
- 小型数据中心 /
- 降噪 /
- 制冷 /
- 气流组织 /
- 计算流体力学(CFD)
Abstract:To allow small data center to work under the office environment to reduce the operating cost, an integrated design of noise reduction and refrigeration is proposed by combining the vapor compression refrigeration system with the server.Based on the verified simulation method of two key component, axial flow fan and evaporator, an airflow organization simulation model for this complex system is developed to predict the airflow and heat transfer. Nonuniformity evaluation indexes based on information entropy and variance are set up to evaluate the influence of different fan arrangement modes on the uniformity of server temperature field. The strategy to deal with larger heat density is analyzed. The results show that the nonuniform momentum drive of axial flow fan leads to uneven flow and heat transfer in the evaporator. The designed noise reduction and refrigeration system is able to maintain the exhaust temperature of the server between 21.6℃ and 22.2℃。Increasing the number of cooling fans can improve the uniformity of temperature field. When heat density increases, increasing the ventilation rate of the server can effectively reduce the exhaust temperature.
-
表 1 小型数据中心的性能参数
Table 1. Performance parameters of a small data center
参数 数值 刀片服务器数量 5 噪声级/dB 75 刀片服务器尺寸/(mm×mm×mm) 40×170×720 单个刀片服务器发热量/W 132 刀片服务器通风量/(m3·s-1) 0.007 表 2 轴流风扇性能参数
Table 2. Performance parameter of axial flow fan
参数 数值 尺寸/(mm×mm×mm) 150×150×51 转速/(r·min-1) 2 800 电压/V 220 电流/A 0.22 表 3 网格无关性验证
Table 3. Grid independence verification
网格数 流量/(m3·s-1) 相对偏差/% 171 015 0.080 1 2.7 301 245 0.083 1 0.9 402 384 0.081 8 0.6 表 4 蒸发器仿真策略
Table 4. Simulation strategy of evaporator
控制方程 层流模型 流体压缩性 不可压 压力速度耦合 SIMPLE 动量离散格式 二阶迎风 能量离散格式 QUICK -
[1] 刘明, 刘静.可降低数据中心热管理能耗的嵌入机柜式冷却方法及其EXERGY分析[J].电子机械工程, 2009, 25(2):1-7. doi: 10.3969/j.issn.1008-5300.2009.02.001LIU M, LIU J.Rack-embeded cooling strategy and its exergy analysis for reduction of power consumption in thermal management data center[J].Electro-mechanical Engineering, 2009, 25(2):1-7(in Chinese). doi: 10.3969/j.issn.1008-5300.2009.02.001 [2] ORÓ E, DEPOORTER V, GARCIA A, et al.Energy efficiency and renewable energy integration in data centres:Strategies and modelling review[J].Renewable and Sustainable Energy Reviews, 2015, 42:429-445. doi: 10.1016/j.rser.2014.10.035 [3] PASSCHIER-VERMEER W, PASSCHIER W F.Noise exposure and public health[J].Environmental Health Perspectives, 2000, 108(Suppl.1):123-131. http://d.old.wanfangdata.com.cn/Periodical/zhcmj200715003 [4] CRIPPEN M J, ALO R K, CHAMPION D, et al.BladeCenter packaging, power, and cooling[J].IBM Journal of Research & Development, 2005, 49(6):887-904. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210316128/ [5] DESAI D M, BRADICICH T M, CHAMPION D, et al.BladeCenter system overview[J].IBM Journal of Research & Development, 2005, 49(6):809-821. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210316129/ [6] PATEL C D, BASH C E, BELADY C, et al. Computational fluid dynamics modeling of high compute density data centers to assure system inlet air specifications[C]//Proceedings of IPACK. New York: ASME, 2001: 8-13. [7] PATEL C D, SHARMA R, BASH C E, et al. Thermal considerations in cooling large scale high compute density data centers[C]//The 8th Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronic Systems, 2002. Piscataway, NJ: IEEE Press, 2002: 767-776. https://ieeexplore.ieee.org/document/1012532/ [8] FAKHIM B, BEHNIA M, ARMFIELD S W, et al.Cooling solutions in an operational data centre:A case study[J].Applied Thermal Engineering, 2011, 31(14):2279-2291. http://www.sciencedirect.com/science/article/pii/S1359431111001578 [9] SCHMIDT R, CRUZ E. Cluster of high powered racks within a raised floor computer data center: Effect of perforated tile flow distribution on rack inlet air temperatures[C]//ASME 2003 International Mechanical Engineering Congress and Exposition. New York: ASME, 2003: 245-262. https://www.mendeley.com/research-papers/cluster-highpowered-racks-within-raisedfloor-computer-data-center-effect-perforated-tile-flow-distri/ [10] ANASYS Inc. ANSYS Version 15 user guide[Z]. Canonsburg: ANASYS Inc., 2014. [11] ZHOU J H, YANG C X.Design and simulation of the CPU fan and heat sinks[J].IEEE Transactions on Components and Packaging Technologies, 2008, 31(4):890-903. doi: 10.1109/TCAPT.2008.2006188 [12] ZHOU J H, YANG C X.Parametric design and numerical simulation of the axial-flow fan for electronic devices[J].IEEE Transactions on Components and Packaging Technologies, 2010, 33(2):287-298. doi: 10.1109/TCAPT.2010.2040069 [13] MISSIRLIS D, YAKINTHOS K, PALIKARAS A, et al.Experimental and numerical investigation of the flow field through a heat exchanger for aero-engine applications[J].International Journal of Heat and Fluid Flow, 2005, 26(3):440-458. doi: 10.1016/j.ijheatfluidflow.2004.10.003 [14] YAKINTHOS K, MISSIRLIS D, PALIKARAS A, et al.Optimization of the design of recuperative heat exchangers in the exhaust nozzle of an aero engine[J].Applied Mathematical Modelling, 2007, 31(11):2524-2541. doi: 10.1016/j.apm.2006.10.008 [15] KRITIKOS K, ALBANAKIS C, MISSIRLIS D, et al.Investigation of the thermal efficiency of a staggered elliptic-tube heat exchanger for aeroengine applications[J].Applied Thermal Engineering, 2010, 30(2):134-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0219663043 [16] DIONISIO A, MENEZES R, MENDES D A. Entropy and uncertainty analysis in financial markets[J/OL]. ArXiv E-prints, 2007: 0709. 0668. http://adsabs.harvard.edu/abs/2007arXiv0709.0668D. [17] PANDEY B. A relation between information entropy and variance[J/OL]. ArXiv E-prints, 2016: 1607. 02768. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2016arXiv160702768P&link_type=ABSTRACT. [18] KANG H C, KIM M H.Effect of strip location on the air-side pressure drop and heat transfer in strip fin-and-tube heat exchanger[J].International Journal of Refrigeration, 1999, 22(4):302-312. doi: 10.1016/S0140-7007(98)00062-0 [19] QU Z G, TAO W Q, HE Y L.Three-dimensional numerical simulation on laminar heat transfer and fluid flow characteristics of strip fin surface with X-arrangement of strips[J].Journal of Heat Transfer, 2004, 126(5):697-707. doi: 10.1115/1.1798971 [20] ASHRAE Technical Committee. Thermal guidelines for data processing environments-expanded data center classes and usage guidance: ASHRAE T C. 9. 9(2011)[S]. Atlanta: ASHRAE, 2011.