留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于风险预测的飞行安全操纵空间构建方法

李哲 徐浩军 薛源 裴彬彬

李哲, 徐浩军, 薛源, 等 . 基于风险预测的飞行安全操纵空间构建方法[J]. 北京航空航天大学学报, 2018, 44(9): 1839-1849. doi: 10.13700/j.bh.1001-5965.2017.0686
引用本文: 李哲, 徐浩军, 薛源, 等 . 基于风险预测的飞行安全操纵空间构建方法[J]. 北京航空航天大学学报, 2018, 44(9): 1839-1849. doi: 10.13700/j.bh.1001-5965.2017.0686
LI Zhe, XU Haojun, XUE Yuan, et al. Construction method of flight safety manipulation space based on risk prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1839-1849. doi: 10.13700/j.bh.1001-5965.2017.0686(in Chinese)
Citation: LI Zhe, XU Haojun, XUE Yuan, et al. Construction method of flight safety manipulation space based on risk prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1839-1849. doi: 10.13700/j.bh.1001-5965.2017.0686(in Chinese)

基于风险预测的飞行安全操纵空间构建方法

doi: 10.13700/j.bh.1001-5965.2017.0686
基金项目: 

民用飞机专项科研 MJ-2015-F-019

国家自然科学基金 61503406

国家“973”计划 2015CB755800

详细信息
    作者简介:

    李哲  男, 博士研究生。主要研究方向:飞行仿真与飞行安全

    徐浩军  男, 硕士, 教授, 博士生导师。主要研究方向:飞行品质、飞行安全与等离子体隐身

    通讯作者:

    徐浩军, E-mail:flight_simulation@163.com

  • 中图分类号: V212.1

Construction method of flight safety manipulation space based on risk prediction

Funds: 

Civil Aircraft Special Research MJ-2015-F-019

National Natural Science Foundation of China 61503406

National Basic Research Program of China 2015CB755800

More Information
  • 摘要:

    提高驾驶员在复杂气象环境和系统故障等条件下的情景感知能力是保障飞行安全的有力措施。基于人-机-环动力学仿真,综合计算操纵指令下预测时间段内多个飞行安全参数风险变化趋势,通过飞行安全参数风险度的叠加,得到该飞行情形下的飞行安全谱和飞行风险概率。通过并行仿真计算整个操纵空间内的飞行风险拓扑云图,构建飞行安全操纵空间,引导驾驶员正确操纵。分析了结冰环境下和舵面卡阻故障模式下的飞行安全操纵空间、事故机理和主要敏感参数。仿真结果表明,外部环境突变或突发系统故障可导致飞行安全操纵空间缩减甚至畸变。飞行安全操纵空间的提出可为驾驶员在复杂条件下的安全操纵提供直观全面的参考,提高驾驶员的情景感知能力,也可为事故演化提供可视化的分析方法。

     

  • 图 1  法向过载时变曲线及相应的风险色谱图

    Figure 1.  Time history and corresponding risk chromatogram for vertical overload

    图 2  某转弯指令情形下的飞行安全谱

    Figure 2.  Flight safety spectra under a certain turning instruction condition

    图 3  正常状态下飞行安全操纵空间

    Figure 3.  Flight safety manipulation space in normal state

    图 4  正常状态下飞行安全操纵窗口

    Figure 4.  Flight safety control windows in normal state

    图 5  对称结冰时的飞行安全操纵空间

    Figure 5.  Flight safety manipulation space under symmetric icing condition

    图 6  右侧机翼除冰系统故障时的飞行安全操纵空间

    Figure 6.  Flight safety manipulation space for right wing anti-icing device failure

    图 7  对称结冰时的飞行安全操纵窗口

    Figure 7.  Flight safety manipulation windows under symmetric icing condition

    图 8  右侧机翼除冰系统故障时的飞行安全操纵窗口

    Figure 8.  Flight safety manipulation windows for right wing anti-icing device failure

    图 9  结冰情形下典型状态点飞行安全谱

    Figure 9.  Flight safety spectra for typical state points under icing conditions

    图 10  方向舵面卡阻时的飞行安全操纵空间

    Figure 10.  Flight safety manipulation space under ruder jammed conditions

    图 11  方向舵面卡阻情形下典型状态点飞行安全谱

    Figure 11.  Flight safety spectra for typical state points under rudder jammed conditions

    表  1  安全相关的飞行参数色彩化区间实例

    Table  1.   Example for colored interval of safety related flight parameters

  • [1] GOVINDARAJAN N, VISSER C C, KAMPEN E V, et al.Optimal control framework for estimating autopilot safety margins[J].Journal of Guidance, Control, and Dynamics, 2015, 38(7):1197-1207. doi: 10.2514/1.G000271
    [2] Airbus Customer Services.Human performance: Enhancing situational awareness: FLT_OPS-HUM-PERF-SEQ 06-REV 01[R].Blagnac Cedex: Airbus Customer Services, 2007.
    [3] 王健名, 徐浩军, 薛源, 等.基于极值理论的平尾结冰飞行风险评估[J].航空学报, 2016, 37(10):3011-3022. http://d.old.wanfangdata.com.cn/Periodical/hkxb201610012

    WANG J M, XU H J, XUE Y, et al.Flight risk evaluation of tailplane icing based on extreme value theory[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3011-3022(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201610012
    [4] MERRET J M, HOSSAIN K N, BRAGG M B.Envelope protection and atmospheric disturbances in icing encounters: AIAA-2002-0814[R].Reston: AIAA, 2002. doi: 10.2514/6.2002-814
    [5] TAN W, GUY A B.Iterative designs of onboard context-sensitive information system for commercial aircrafts[J].Journal of Transport Information and Safety, 2016, 34(4):70-77. https://www.researchgate.net/publication/306393625_Iterative_Designs_of_Onboard_Context-Sensitive_Information_System_OCSIS
    [6] CARLOS M, SERAFIN M.Modeling aircrew information management for estimation of situational awareness using dynamic bayesian networks[J].Simulation Modelling Practice and Theory, 2016, 65:93-103. doi: 10.1016/j.simpat.2015.11.008
    [7] TRUJILLO A, GREGORY I.Pilot preferences on displayed aircraft control variables[J].Lecture Notes in Computer Science, 2013, 8020(1):193-202. doi: 10.1007/978-3-642-39354-9_22.pdf
    [8] GINGRAS D R, BAMHART B, RANAUDO R, et al.Development and implementation of a model-driven envelope protection system for in-flight ice contamination: AIAA-2010-8141[R].Reston: AIAA, 2010. https://library.villanova.edu/Find/Record/1399600/Description
    [9] WEI H Y, ZHUANG D M, WANYAN X R, et al.An experimental analysis of situation awareness for cockpit display interface evaluation based on flight simulation[J].Chinese Journal of Aeronautics, 2013, 26(4):884-889. doi: 10.1016/j.cja.2013.04.053
    [10] 肖旭, 完颜笑如, 庄达民.显示界面多维视觉编码综合评价模型[J].北京航空航天大学学报, 2015, 41(6):1012-1018. http://bhxb.buaa.edu.cn/CN/abstract/abstract13283.shtml

    XIAO X, WANYAN X R, ZHUANG D M.Comprehensive evaluation model of multidimensional visual coding on display interface[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1012-1018(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13283.shtml
    [11] 王小龙, 徐浩军, 薛源, 等.俯仰姿态保持模式下飞机结冰边界保护方法[J].航空动力学报, 2016, 31(9):2087-2094. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609006

    WANG X L, XU H J, XUE Y, et al.Envelope protection method for pitch attitude holding mode under flight icing conditions[J].Journal of Aerospace Power, 2016, 31(9):2087-2094(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609006
    [12] XUE Y, XU H J, WANG X L.Build probability distribution maps of flight risk during wake encountering[J].Journal of Aircraft, 2015, 52(3):805-818. doi: 10.2514/1.C032740
    [13] 薛源, 徐浩军, 李强, 等.尾流飞行风险概率拓扑图的构建方法[J].北京航空航天大学学报, 2014, 40(8):1044-1054. http://bhxb.buaa.edu.cn/CN/abstract/abstract12994.shtml

    XUE Y, XU H J, LI Q, et al.Topological space construction of flight risk probabilities during wake encountering[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8):1044-1054(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12994.shtml
    [14] KASEY A A, BENJAMIN D S, ENRIC X, et al.Flight envelope information-augmented display for enhanced pilot situation awareness: AIAA-2015-1112[R].Reston: AIAA, 2015. https://www.researchgate.net/publication/271138347_Flight_Envelope_Information-Augmented_Display_for_Enhanced_Pilot_Situation_Awareness
    [15] CHRISTOPHER J, HAINLEY J.Pilot performance, workload, and situation awareness during lunar landing mode transitions[J].Journal of Spacecraft and Rockets, 2013, 50(4):793-801. doi: 10.2514/1.A32267
    [16] RANDALL C D, DENNIS W W, JAMES T H, et al.A primary flight display vastly improves situational awareness and accuracy of flight[J].Journal of Aircraft, 2006, 43(6):1621-1627. doi: 10.2514/1.20352
    [17] HUESCHEN R M.Development of the transport class model (TCM) aircraft simulation from a sub-scale generic transport model (GTM) simulation: NASA/TM-2011-217169[R].Washington, D.C.: NASA, 2011. https://www.amazon.com/Development-Transport-Aircraft-Simulation-Sub-Scale/dp/1289072434
    [18] HANKE C R, NORDWALL D R.The simulation of a jumbo jet transport aircraft.Volume 2 modeling data: NASA D6-30643[R].Washington, D.C.: NASA, 1970.
    [19] 徐忠达, 苏媛, 曹义华.积冰对飞机操纵性的影响与仿真[J].北京航空航天大学学报, 2012, 38(7):941-946. http://bhxb.buaa.edu.cn/CN/abstract/abstract12342.shtml

    XU Z D, SU Y, CAO Y H.Simulation of ice effects on aircraft controllability[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):941-946(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12342.shtml
    [20] BRAGG M B, HUTCHISON T, MERRET J.Effect of ice accretion on aircraft flight dynamics: AIAA-2000-0360[R].Reston: AIAA, 2000. https://www.researchgate.net/publication/266409254_Effect_of_Ice_Accretion_on_Aircraft_Flight_Dynamics
    [21] 中国民用航空局.运输类飞机适航标准: CCAR-25-R4[S].北京: 中国民用航空总局, 2011: 173-177.

    Civil Aviation Administration of China.Airworthiness standards for transport aircraft: CCAR-25-R4[S].Beijing: Civil Aviation Administration of China, 2011: 173-177(in Chinese).
    [22] 薛源, 徐浩军, 胡孟权.结冰条件下人-机-环系统的飞行风险概率[J].航空学报, 2016, 37(11):3328-3339. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611011

    XUE Y, XU H J, HU M Q.Flight risk probability of pilot-aircraft-environment system under icing conditions[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3328-3339(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611011
    [23] 应思斌, 艾剑良.飞机结冰包线保护对开环飞行性能影响与仿真[J].系统仿真学报, 2010, 22(10):2273-2301. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201010008

    YING S B, AI J L.Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J].Journal of System Simulation, 2010, 22(10):2273-2301(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201010008
    [24] LAMPTON A, VALASEK J.Prediction of icing effects on the dynamic response of light airplanes[J].Journal of Guidance, Control, and Dynamics, 2007, 30(3):722-732. doi: 10.2514/1.25687
    [25] LAMPTON A, VALASEK J.Prediction of icing effects on the coupled response of light airplanes[J].Journal of Guidance, Control, and Dynamics, 2008, 31(3):656-673. doi: 10.2514/1.31165
    [26] BURDUN I Y.Prediction of aircraft safety performance in complex flight situations: 2003-01-2988[R].Washington, D.C.: SAE, 2003.
    [27] BURDUN I Y.Automated planning, exploration and mapping of complex operational domains of flight using multifactor situational trees[J].SAE International Journal of Aerospace, 2011, 4(2):1149-1175. doi: 10.4271/2011-01-2659
    [28] CACCIABUE P C.Human error risk management for engineering systems:A methodology for design, safety assessment, accident investigation and training[J].Reliability Engineering and System Safety, 2004, 83(2):229-240. doi: 10.1016/j.ress.2003.09.013
    [29] PEI B B, XU H J, XUE Y.Flight-safety space and cause of incident under icing conditions[J].Journal of Guidance, Control, and Dynamics, 2017, 40:2983-2990. doi: 10.2514/1.G002593
    [30] 中国人民解放军总装备部.军用固定翼飞机和旋翼机科研试飞风险科目: GJB 626A-2006[S].北京: 中国人民解放军空军, 2006: 5.

    General Armanent Department of Peoples's Liberation Army.Military fixed-wing aircraft and rotorcraft research test flight risk subjects: GJB 626A-2006[S].Beijing: the Chinese People's Liberation Army Air Force, 2006: 5(in Chinese).
    [31] Society of Automotive Engineers.Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: SAE ARP4761[S].Washington, D.C.: SAE, 1996.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  732
  • HTML全文浏览量:  134
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 录用日期:  2018-02-10
  • 网络出版日期:  2018-09-20

目录

    /

    返回文章
    返回
    常见问答