-
摘要:
提高驾驶员在复杂气象环境和系统故障等条件下的情景感知能力是保障飞行安全的有力措施。基于人-机-环动力学仿真,综合计算操纵指令下预测时间段内多个飞行安全参数风险变化趋势,通过飞行安全参数风险度的叠加,得到该飞行情形下的飞行安全谱和飞行风险概率。通过并行仿真计算整个操纵空间内的飞行风险拓扑云图,构建飞行安全操纵空间,引导驾驶员正确操纵。分析了结冰环境下和舵面卡阻故障模式下的飞行安全操纵空间、事故机理和主要敏感参数。仿真结果表明,外部环境突变或突发系统故障可导致飞行安全操纵空间缩减甚至畸变。飞行安全操纵空间的提出可为驾驶员在复杂条件下的安全操纵提供直观全面的参考,提高驾驶员的情景感知能力,也可为事故演化提供可视化的分析方法。
Abstract:Improving the pilot's situational awareness is an effective measure to ensure flight safety under the complex meteorological environment and system failure conditions. Based on the complex dynamics of pilot-vehicle-environment simulation, the risk variation trend of multiple flight safety parameters is predicted under a certain manipulation command, and the flight safety spectrum and flight risk probability for the flight condition are obtained by the superposition of the flight safety parameters' risk degrees. Through the parallel simulation, the flight risk topology contour in the whole operation space is calculated, and the flight safety manipulation space is constructed to guide the pilot to manipulate correctly. The flight safety operation space, the accident mechanism and the main sensitive parameters are analyzed under the icing environment and rudder surface jammed conditions. The simulation results show that the external environment mutation or sudden system failure can lead to safety manipulation space reduction or even distortion. The proposal of safety manipulation space under the complex conditions could not only provide an intuitive and comprehensive reference to improve the pilot's situational awareness, but also provide a visual analytical method for the accident evolution.
-
表 1 安全相关的飞行参数色彩化区间实例
Table 1. Example for colored interval of safety related flight parameters
-
[1] GOVINDARAJAN N, VISSER C C, KAMPEN E V, et al.Optimal control framework for estimating autopilot safety margins[J].Journal of Guidance, Control, and Dynamics, 2015, 38(7):1197-1207. doi: 10.2514/1.G000271 [2] Airbus Customer Services.Human performance: Enhancing situational awareness: FLT_OPS-HUM-PERF-SEQ 06-REV 01[R].Blagnac Cedex: Airbus Customer Services, 2007. [3] 王健名, 徐浩军, 薛源, 等.基于极值理论的平尾结冰飞行风险评估[J].航空学报, 2016, 37(10):3011-3022. http://d.old.wanfangdata.com.cn/Periodical/hkxb201610012WANG J M, XU H J, XUE Y, et al.Flight risk evaluation of tailplane icing based on extreme value theory[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3011-3022(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201610012 [4] MERRET J M, HOSSAIN K N, BRAGG M B.Envelope protection and atmospheric disturbances in icing encounters: AIAA-2002-0814[R].Reston: AIAA, 2002. doi: 10.2514/6.2002-814 [5] TAN W, GUY A B.Iterative designs of onboard context-sensitive information system for commercial aircrafts[J].Journal of Transport Information and Safety, 2016, 34(4):70-77. https://www.researchgate.net/publication/306393625_Iterative_Designs_of_Onboard_Context-Sensitive_Information_System_OCSIS [6] CARLOS M, SERAFIN M.Modeling aircrew information management for estimation of situational awareness using dynamic bayesian networks[J].Simulation Modelling Practice and Theory, 2016, 65:93-103. doi: 10.1016/j.simpat.2015.11.008 [7] TRUJILLO A, GREGORY I.Pilot preferences on displayed aircraft control variables[J].Lecture Notes in Computer Science, 2013, 8020(1):193-202. doi: 10.1007/978-3-642-39354-9_22.pdf [8] GINGRAS D R, BAMHART B, RANAUDO R, et al.Development and implementation of a model-driven envelope protection system for in-flight ice contamination: AIAA-2010-8141[R].Reston: AIAA, 2010. https://library.villanova.edu/Find/Record/1399600/Description [9] WEI H Y, ZHUANG D M, WANYAN X R, et al.An experimental analysis of situation awareness for cockpit display interface evaluation based on flight simulation[J].Chinese Journal of Aeronautics, 2013, 26(4):884-889. doi: 10.1016/j.cja.2013.04.053 [10] 肖旭, 完颜笑如, 庄达民.显示界面多维视觉编码综合评价模型[J].北京航空航天大学学报, 2015, 41(6):1012-1018. http://bhxb.buaa.edu.cn/CN/abstract/abstract13283.shtmlXIAO X, WANYAN X R, ZHUANG D M.Comprehensive evaluation model of multidimensional visual coding on display interface[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1012-1018(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13283.shtml [11] 王小龙, 徐浩军, 薛源, 等.俯仰姿态保持模式下飞机结冰边界保护方法[J].航空动力学报, 2016, 31(9):2087-2094. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609006WANG X L, XU H J, XUE Y, et al.Envelope protection method for pitch attitude holding mode under flight icing conditions[J].Journal of Aerospace Power, 2016, 31(9):2087-2094(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609006 [12] XUE Y, XU H J, WANG X L.Build probability distribution maps of flight risk during wake encountering[J].Journal of Aircraft, 2015, 52(3):805-818. doi: 10.2514/1.C032740 [13] 薛源, 徐浩军, 李强, 等.尾流飞行风险概率拓扑图的构建方法[J].北京航空航天大学学报, 2014, 40(8):1044-1054. http://bhxb.buaa.edu.cn/CN/abstract/abstract12994.shtmlXUE Y, XU H J, LI Q, et al.Topological space construction of flight risk probabilities during wake encountering[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8):1044-1054(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12994.shtml [14] KASEY A A, BENJAMIN D S, ENRIC X, et al.Flight envelope information-augmented display for enhanced pilot situation awareness: AIAA-2015-1112[R].Reston: AIAA, 2015. https://www.researchgate.net/publication/271138347_Flight_Envelope_Information-Augmented_Display_for_Enhanced_Pilot_Situation_Awareness [15] CHRISTOPHER J, HAINLEY J.Pilot performance, workload, and situation awareness during lunar landing mode transitions[J].Journal of Spacecraft and Rockets, 2013, 50(4):793-801. doi: 10.2514/1.A32267 [16] RANDALL C D, DENNIS W W, JAMES T H, et al.A primary flight display vastly improves situational awareness and accuracy of flight[J].Journal of Aircraft, 2006, 43(6):1621-1627. doi: 10.2514/1.20352 [17] HUESCHEN R M.Development of the transport class model (TCM) aircraft simulation from a sub-scale generic transport model (GTM) simulation: NASA/TM-2011-217169[R].Washington, D.C.: NASA, 2011. https://www.amazon.com/Development-Transport-Aircraft-Simulation-Sub-Scale/dp/1289072434 [18] HANKE C R, NORDWALL D R.The simulation of a jumbo jet transport aircraft.Volume 2 modeling data: NASA D6-30643[R].Washington, D.C.: NASA, 1970. [19] 徐忠达, 苏媛, 曹义华.积冰对飞机操纵性的影响与仿真[J].北京航空航天大学学报, 2012, 38(7):941-946. http://bhxb.buaa.edu.cn/CN/abstract/abstract12342.shtmlXU Z D, SU Y, CAO Y H.Simulation of ice effects on aircraft controllability[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):941-946(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12342.shtml [20] BRAGG M B, HUTCHISON T, MERRET J.Effect of ice accretion on aircraft flight dynamics: AIAA-2000-0360[R].Reston: AIAA, 2000. https://www.researchgate.net/publication/266409254_Effect_of_Ice_Accretion_on_Aircraft_Flight_Dynamics [21] 中国民用航空局.运输类飞机适航标准: CCAR-25-R4[S].北京: 中国民用航空总局, 2011: 173-177.Civil Aviation Administration of China.Airworthiness standards for transport aircraft: CCAR-25-R4[S].Beijing: Civil Aviation Administration of China, 2011: 173-177(in Chinese). [22] 薛源, 徐浩军, 胡孟权.结冰条件下人-机-环系统的飞行风险概率[J].航空学报, 2016, 37(11):3328-3339. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611011XUE Y, XU H J, HU M Q.Flight risk probability of pilot-aircraft-environment system under icing conditions[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3328-3339(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611011 [23] 应思斌, 艾剑良.飞机结冰包线保护对开环飞行性能影响与仿真[J].系统仿真学报, 2010, 22(10):2273-2301. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201010008YING S B, AI J L.Simulation of aircraft flight envelope protect in icing encounters effects on open loop dynamic[J].Journal of System Simulation, 2010, 22(10):2273-2301(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201010008 [24] LAMPTON A, VALASEK J.Prediction of icing effects on the dynamic response of light airplanes[J].Journal of Guidance, Control, and Dynamics, 2007, 30(3):722-732. doi: 10.2514/1.25687 [25] LAMPTON A, VALASEK J.Prediction of icing effects on the coupled response of light airplanes[J].Journal of Guidance, Control, and Dynamics, 2008, 31(3):656-673. doi: 10.2514/1.31165 [26] BURDUN I Y.Prediction of aircraft safety performance in complex flight situations: 2003-01-2988[R].Washington, D.C.: SAE, 2003. [27] BURDUN I Y.Automated planning, exploration and mapping of complex operational domains of flight using multifactor situational trees[J].SAE International Journal of Aerospace, 2011, 4(2):1149-1175. doi: 10.4271/2011-01-2659 [28] CACCIABUE P C.Human error risk management for engineering systems:A methodology for design, safety assessment, accident investigation and training[J].Reliability Engineering and System Safety, 2004, 83(2):229-240. doi: 10.1016/j.ress.2003.09.013 [29] PEI B B, XU H J, XUE Y.Flight-safety space and cause of incident under icing conditions[J].Journal of Guidance, Control, and Dynamics, 2017, 40:2983-2990. doi: 10.2514/1.G002593 [30] 中国人民解放军总装备部.军用固定翼飞机和旋翼机科研试飞风险科目: GJB 626A-2006[S].北京: 中国人民解放军空军, 2006: 5.General Armanent Department of Peoples's Liberation Army.Military fixed-wing aircraft and rotorcraft research test flight risk subjects: GJB 626A-2006[S].Beijing: the Chinese People's Liberation Army Air Force, 2006: 5(in Chinese). [31] Society of Automotive Engineers.Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: SAE ARP4761[S].Washington, D.C.: SAE, 1996.