留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种单压电叠堆驱动的回转冲击超声波钻

王印超 全齐全 于红英 柏德恩 邓宗全

王印超, 全齐全, 于红英, 等 . 一种单压电叠堆驱动的回转冲击超声波钻[J]. 北京航空航天大学学报, 2018, 44(9): 1850-1859. doi: 10.13700/j.bh.1001-5965.2017.0699
引用本文: 王印超, 全齐全, 于红英, 等 . 一种单压电叠堆驱动的回转冲击超声波钻[J]. 北京航空航天大学学报, 2018, 44(9): 1850-1859. doi: 10.13700/j.bh.1001-5965.2017.0699
WANG Yinchao, QUAN Qiquan, YU Hongying, et al. A rotary-percussive ultrasonic drill driven by single piezoelectric stack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1850-1859. doi: 10.13700/j.bh.1001-5965.2017.0699(in Chinese)
Citation: WANG Yinchao, QUAN Qiquan, YU Hongying, et al. A rotary-percussive ultrasonic drill driven by single piezoelectric stack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1850-1859. doi: 10.13700/j.bh.1001-5965.2017.0699(in Chinese)

一种单压电叠堆驱动的回转冲击超声波钻

doi: 10.13700/j.bh.1001-5965.2017.0699
基金项目: 

国家自然科学基金 61403106

高等学校学科创新引智计划 B07018

中央高校基本科研业务费专项资金 HIT.NSRIF.2014051

详细信息
    作者简介:

    王印超  男, 博士研究生。主要研究方向:超声波钻驱动及采样技术

    全齐全  男, 博士, 副教授。主要研究方向:空间机构测试技术

    于红英  女, 博士, 教授, 博士生导师。主要研究方向:机械CAD及仿真技术

    柏德恩  男, 博士研究生。主要研究方向:超声驱动及超声钻钻探技术

    邓宗全  男, 硕士, 教授, 博士生导师。主要研究方向:宇航空间机构技术

    通讯作者:

    全齐全, E-mail:quanqiquan@hit.edu.cn

  • 中图分类号: TP242

A rotary-percussive ultrasonic drill driven by single piezoelectric stack

Funds: 

National Natural Science Foundation of China 61403106

Program of Introducing Talents of Discipline to Universities B07018

the Fundamental Research Funds for the Central Universities HIT.NSRIF.2014051

More Information
  • 摘要:

    为提高冲击式超声波钻的排屑效率,基于压电驱动原理提出了一种单压电叠堆驱动的回转冲击超声波钻(RPUD)。RPUD仅利用单一压电叠堆两侧的振动实现了钻具的回转冲击运动,将一侧振动转变为回转运动,另一侧振动转变为冲击运动,且回转运动和冲击运动可单独调节。为实现超声波钻回转运动和冲击运动的同步谐振,借助有限元方法,对超声波钻换能器进行模态分析和瞬态分析。基于优选的结构设计参数,研制了RPUD样机并开展了钻进实验研究。实验结果验证了RPUD的钻进功能,并利用响应面方法分析了钻压力等各钻进参数对钻进效率的影响。

     

  • 图 1  回转冲击超声波钻的系统组成

    Figure 1.  System composition of RPUD

    图 2  回转冲击超声波钻的工作原理

    Figure 2.  Working principle of RPUD

    图 3  回转冲击超声波钻驱动换能器工作模态

    Figure 3.  Operating modal of driving transducer of RPUD

    图 4  V型耦合振子顶部节点运动轨迹

    Figure 4.  Movement trajectory of top node on V-LT coupler

    图 5  回转冲击超声波钻结构设计

    Figure 5.  Structure design of RPUD

    图 6  驱动换能器阻抗分析

    Figure 6.  Impedance analysis of driving transducers

    图 7  回转冲击超声波钻钻进测试平台

    Figure 7.  Drilling test-bed of RPUD

    图 8  回转冲击超声波钻砂岩钻进过程

    Figure 8.  Drilling process of RPUD on sandstone

    图 9  不同钻压力下回转冲击超声波钻钻进深度

    Figure 9.  Drilling depth of RPUD under different weight on bit

    图 10  不同自由质量下回转冲击超声波钻钻进深度

    Figure 10.  Drilling depth of RPUD under different free mass

    图 11  不同回转预紧力下回转冲击超声波钻钻进深度

    Figure 11.  Drilling depth of RPUD under different rotary preload force

    图 12  不同回转预紧刚度下回转冲击超声波钻钻进深度

    Figure 12.  Drilling depth of RPUD under different rotary preload stiffness

    图 13  不同冲击预紧力下回转冲击超声波钻钻进深度实验

    Figure 13.  Drilling depth of RPUD under different percussive preload force

    图 14  不同冲击预紧刚度下回转冲击超声波钻钻进深度实验

    Figure 14.  Drilling depth of RPUD under different percussive preload stiffness

    图 15  拟合方程与实验数据残差正态图

    Figure 15.  Residual normal graph of fitting equation and experimental data

    图 16  钻压力和自由质量对钻进深度的交互影响响应面图

    Figure 16.  Response surface plots of mutual-influence of weight on bit and free mass on drilling depth

    图 17  钻压力和冲击预紧刚度对钻进深度的交互影响响应面图

    Figure 17.  Response surface plots of mutual-influence of weight on bit and percussive preload stiffness on drilling depth

    图 18  钻压力和冲击预紧力对钻进深度的交互影响响应面图

    Figure 18.  Response surface plots of mutual-influence of weight on bit and percussive preload force on drilling depth

    图 19  自由质量和回转预紧力对钻进深度的交互影响响应面图

    Figure 19.  Response surface plots of mutual-influence of free mass and rotary preload force on drilling depth

    图 20  自由质量和回转预紧刚度对钻进深度影响的交互影响响应面图

    Figure 20.  Response surface plots of mutual-influence of free mass and rotary preload stiffness on drilling depth

    表  1  钻进实验因素水平

    Table  1.   Factors and levels of drilling experiment

    水平 A/N B/g C/N D/(N·mm-1) E/(N·mm-1) F/N
    -1 6 6 7 0.18 0.41 1
    0 7 8 10 0.30 0.65 2
    1 8 10 13 0.41 0.95 3
    下载: 导出CSV

    表  2  响应面实验设计及结果

    Table  2.   Experimental design and results for response surface

    实验序号 A/N B/g C/N D/(N·mm-1) E/(N·mm-1) F/N Yd/mm
    1 6 6 10 0.18 0.65 2 17.80
    2 8 6 10 0.18 0.65 2 19.50
    3 6 10 10 0.18 0.65 2 19.68
    4 8 10 10 0.18 0.65 2 19.80
    5 6 6 10 0.41 0.65 2 16.20
    6 8 6 10 0.41 0.65 2 18.80
    7 6 10 10 0.41 0.65 2 19.20
    8 8 10 10 0.41 0.65 2 18.36
    9 7 6 7 0.30 0.41 2 16.74
    10 7 10 7 0.30 0.41 2 18.80
    11 7 6 13 0.30 0.41 2 17.82
    12 7 10 13 0.30 0.41 2 19.12
    13 7 6 7 0.30 0.95 2 15.90
    14 7 10 7 0.30 0.95 2 19.10
    15 7 6 13 0.30 0.95 2 18.10
    16 7 10 13 0.30 0.95 2 19.20
    17 7 8 7 0.18 0.65 1 14.70
    18 7 8 13 0.18 0.65 1 19.60
    19 7 8 7 0.41 0.65 1 15.50
    20 7 8 13 0.41 0.65 1 18.30
    21 7 8 7 0.18 0.65 3 16.10
    22 7 8 13 0.18 0.65 3 20.20
    23 7 8 7 0.41 0.65 3 13.80
    24 7 8 13 0.41 0.65 3 20.00
    25 6 8 10 0.18 0.41 2 17.04
    26 8 8 10 0.18 0.41 2 18.32
    27 6 8 10 0.41 0.41 2 14.22
    28 8 8 10 0.41 0.41 2 17.04
    29 6 8 10 0.18 0.95 2 17.92
    30 8 8 10 0.18 0.95 2 19.17
    31 6 8 10 0.41 0.95 2 14.44
    32 8 8 10 0.41 0.95 2 19.24
    33 7 6 10 0.30 0.41 1 13.52
    34 7 10 10 0.30 0.41 1 19.40
    35 7 6 10 0.30 0.95 1 16.80
    36 7 10 10 0.30 0.95 1 19.32
    37 7 6 10 0.30 0.41 3 13.60
    38 7 10 10 0.30 0.41 3 19.22
    39 7 6 10 0.30 0.95 3 18.40
    40 7 10 10 0.30 0.95 3 19.20
    41 6 8 7 0.30 0.65 1 14.40
    42 8 8 7 0.30 0.65 1 19.72
    43 6 8 13 0.30 0.65 1 15.64
    44 8 8 13 0.30 0.65 1 20.30
    45 6 8 7 0.30 0.65 3 15.70
    46 8 8 7 0.30 0.65 3 18.80
    47 6 8 13 0.30 0.65 3 15.80
    48 8 8 13 0.30 0.65 3 20.10
    49 7 8 10 0.30 0.65 2 24.30
    50 7 8 10 0.30 0.65 2 24.10
    51 7 8 10 0.30 0.65 2 23.60
    52 7 8 10 0.30 0.65 2 24.60
    53 7 8 10 0.30 0.65 2 25.10
    54 7 8 10 0.30 0.65 2 23.80
    下载: 导出CSV

    表  3  方差分析

    Table  3.   Variance analysis

    方差来源 平方和 自由度 均方 f P
    模型 364.58 17 21.45 13.46 <0.000 1
    A 40.33 1 40.33 25.31 <0.000 1
    B 30.78 1 30.78 19.32 <0.000 1
    C 25.81 1 25.81 16.20 0.000 3
    D 9.07 1 9.07 5.69 0.022 4
    E 5.97 1 5.97 3.75 0.060 8
    F 0.60 1 0.60 0.38 0.542 7
    AB 3.16 1 3.16 1.99 0.167 4
    AD 1.58 1 1.58 0.99 0.325 8
    AF 0.85 1 0.85 0.53 0.471 1
    BC 2.03 1 2.03 1.65 0.126 7
    BE 1.29 1 1.29 1.06 0.159 6
    A2 40.86 1 40.86 25.65 <0.000 1
    B2 17.99 1 17.99 11.29 0.001 9
    C2 41.88 1 41.88 26.29 <0.000 1
    D2 52.92 1 52.92 33.22 <0.000 1
    E2 81.43 1 81.43 51.11 <0.000 1
    F2 74.37 1 74.37 46.69 <0.000 1
    残差 57.35 36 1.59
    失拟项 55.86 31 1.80 6.03 0.026 8
    纯误差 1.50 5 0.30
    总离差 421.93 53
    下载: 导出CSV
  • [1] 叶培建, 彭兢.深空探测与我国深空探测展望[J].中国工程科学, 2006, 8(10):13-18. doi: 10.3969/j.issn.1009-1742.2006.10.003

    YE P J, PENG J.Deep space exploration and its prospect in China[J].Engineering Sciences, 2006, 8(10):13-18(in Chinese). doi: 10.3969/j.issn.1009-1742.2006.10.003
    [2] 徐伟彪, 赵海斌.小行星深空探测的科学意义和展望[J].地球科学进展, 2005, 20(11):31-38. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200511004

    XU W B, ZHAO H B.Deep space exploration of asteroids:The science perspectives[J].Advances in Earth Science, 2005, 20(11):31-38(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200511004
    [3] 朱恩涌, 孙国江, 果琳丽, 等.我国小行星探测发展思路及关键技术探讨[J].航天器工程, 2012, 21(3):96-100. doi: 10.3969/j.issn.1673-8748.2012.03.037

    ZHU E Y, SUN G J, GUO L L, et al.Study on development idea of Chinese asteroid exploration and key technologies[J].Spacecraft Engineering, 2012, 21(3):96-100(in Chinese). doi: 10.3969/j.issn.1673-8748.2012.03.037
    [4] FINZI A E, ZAZZERA F B, DAINESE C, et al.SD2-How to sample a comet[J].Space Science Reviews, 2007, 128(1-4):281-299. doi: 10.1007/s11214-006-9134-6
    [5] 李京霖, 丁希仑, 张文明, 等.一种多功能小行星采样器的设计[J].机械工程学报, 2015, 51(13):167-175. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201513019

    LI J L, DING X L, ZHANG W M, et al.Design of a multi-function minor planet soil sampler[J].Journal of Mechanical Engineering, 2015, 51(13):167-175(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201513019
    [6] BERRY K, SUTTER B, MAY A, et al.Osiris-rex touch-and-go (tag) mission design and analysis[C]//Proceedings of 36th Annual AAS Guidance and Control Conference.Springfield: AAS Press, 2013: 1-12. https://ntrs.nasa.gov/search.jsp?R=20130013409
    [7] KAWAGUCHI J I, FUJIWARA A, UESUGI T.Hayabusa-Its technology and science accomplishment summary and Hayabusa-2[J].Acta Astronautica, 2008, 62(11-12):639-647. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025800323/
    [8] ZHANG T, ZHANG W, WANG K, et al.Drilling, sampling, and sample-handling system for China's asteroid exploration mission[J].Acta Astronautica, 2017, 137:192-204. doi: 10.1016/j.actaastro.2017.04.017
    [9] ZACNY K, BAR-COHEN Y, BRENNAN M, et al.Drilling systems for extraterrestrial subsurface exploration[J].Astrobiology, 2008, 8(2):665-706. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025800236
    [10] 丁希仑, 李可佳, 尹忠旺.面向月壤采集的多杆深层采样器[J].宇航学报, 2009, 30(3):1189-1194. doi: 10.3873/j.issn.1000-1328.2009.03.058

    DING X L, LI K J, YIN Z W.Multi-rod deep driller for lunar subsurface sampling[J].Journal of Astronautics, 2009, 30(3):1189-1194(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.03.058
    [11] ZHANG T, DING X L.Drilling forces model for lunar regolith exploration and experimental validation[J].Acta Astronautica, 2017, 131:190-203. doi: 10.1016/j.actaastro.2016.11.035
    [12] BAO X, BAR-COHEN Y, CHANG Z, et al.Modeling and computer simulation of ultrasonic/sonic driller/corer (USDC)[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(9):1147-1160. doi: 10.1109/TUFFC.2003.1235326
    [13] HARKNESS P, LUCAS M.A brief overview of space applications for ultrasonics[J].Ultrasonics, 2012, 52(8):975-979. doi: 10.1016/j.ultras.2012.09.004
    [14] BAR-COHEN Y, SHERRIT S, DOLGIN B P, et al.Ultrasonic/sonic driller/corer (USDC) as a sampler for planetary exploration[C]//Proceedings of Aerospace Conference.Bellingham: SPIE Press, 2012: 263-271. http://www.mendeley.com/research/ultrasonicsonic-drillercorer-usdc-sampler-planetaryexploration/
    [15] THOMAS P N H.Magna parva and ESA's ultrasonic drill tool for planetary surface exploration[C]//Proceedings of Earth and Space: Engineering, Science, Construction, and Operations in Challenging Environments.Reston: ASCE Press, 2010: 1235-1245. http://www.mendeley.com/research/magna-parva-esas-ultrasonic-drill-tool-planetary-surface-exploration/
    [16] 杨康.基于超声波/声波能量耦合机理的钻探器研究[D].南京: 南京航空航天大学, 2012: 1-58. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041081.htm

    YANG K.Research on drilling corer based on ultrasonic/acoustic energy coupling mechanism[D].Nanjing: Nanjing University of Aeronautics & Astronautics, 2012: 1-58(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041081.htm
    [17] 全齐全, 李贺, 邓宗全, 等.用于星体表面岩石采样的超声波钻进取心器的研制[J].中南大学学报(自然科学版), 2016, 47(12):4081-4089. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZNGD201612017&dbname=CJFD&dbcode=CJFQ

    QUAN Q Q, LI H, DENG Z Q, et al.An ultrasonic coring tool for rock-sampling on extraterrestrial planets[J].Journal of Central South University (Science and Technology), 2016, 47(12):4081-4089(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZNGD201612017&dbname=CJFD&dbcode=CJFQ
    [18] CARDONI A, HARKNESS P, LUCAS M.Ultrasonic rock sampling using longitudinal-torsional vibrations[J].Physics Procedia, 2010, 3(1):123-134. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215579872/
    [19] HARKNESS P, LUCAS M, CARDONI A.Coupling and degenerating modes in longitudinal-torsional step horns[J].Ultrasonics, 2010, 52(8):980-988. http://www.ncbi.nlm.nih.gov/pubmed/22770885
    [20] BADESCU M, BAR-COHEN Y, SHERRIT S, et al.Percussive augmenter of rotary drills(PARoD)[C]//Proceedings of SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring.Bellingham: SPIE Press, 2013: 1-8. http://adsabs.harvard.edu/abs/2012spie.8345e..0jb
    [21] ZACNY K, PULSEN G, BAR-COHEN Y, et al.Wireline deep drill for exploration of Mars, Europa, and Enceladus[C]//Proceedings of Aerospace Conference.Bellingham: SPIE Press, 2013: 1-14. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6497189
    [22] BADESCU M, SHERRIT S, BAO X, et al.Auto-Gopher: A wire-line rotary-hammer ultrasonic drill[C]//Proceedings of SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring.Bellingham: SPIE Press, 2011: 1-8. http://adsabs.harvard.edu/abs/2011SPIE.7981E..3UB
    [23] TIMONEY R, HARKNESS P, LI X, et al.The development of the european uitrasonic planetary core drill (UPCD): AIAA-2005-4553[R].Reston: AIAA, 2005. doi: 10.2514/6.2015-4553
    [24] LI X, WORRALL K, HARKNESS P, et al.A motion control system design for an ultrasonic planetary core drill (UPCD) unit: AIAA-2015-4554[R].Reston: AIAA, 2015. http://eprints.gla.ac.uk/107877/
    [25] SHERRIT S, DOMM L, BAO X, et al.Single piezo-actuator rotary-hammering (SPaRH) drill[C]//Proceedings of SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring.Bellingham: SPIE Press, 2012: 1-11. http://www.mendeley.com/research/single-piezoactuator-rotaryhammering-drill/
    [26] LIU Y, YANG X, CHEN W, et al.A bonded-type piezoelectric actuator using the first and second bending vibration modes[J].IEEE Transactions on Industrial Electronics, 2016, 63(3):1676-1693. doi: 10.1109/TIE.2015.2492942
    [27] TSUJINO J.Ultrasonic motor using a one-dimensional longitudinal-torsional vibration converter with diagonal slits[J].Smart Materials and Structures, 1998, 7(3):345-351. doi: 10.1088/0964-1726/7/3/009
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  10
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-13
  • 录用日期:  2018-02-09
  • 刊出日期:  2018-09-20

目录

    /

    返回文章
    返回
    常见问答