留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米复合相变材料熔化过程数值模拟

赵亮 邢玉明 吕倩 罗叶刚 刘鑫

赵亮, 邢玉明, 吕倩, 等 . 纳米复合相变材料熔化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(9): 1860-1868. doi: 10.13700/j.bh.1001-5965.2017.0712
引用本文: 赵亮, 邢玉明, 吕倩, 等 . 纳米复合相变材料熔化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(9): 1860-1868. doi: 10.13700/j.bh.1001-5965.2017.0712
ZHAO Liang, XING Yuming, LYU Qian, et al. Numerical simulation of melting process of nanoparticle-enhanced phase change materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1860-1868. doi: 10.13700/j.bh.1001-5965.2017.0712(in Chinese)
Citation: ZHAO Liang, XING Yuming, LYU Qian, et al. Numerical simulation of melting process of nanoparticle-enhanced phase change materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1860-1868. doi: 10.13700/j.bh.1001-5965.2017.0712(in Chinese)

纳米复合相变材料熔化过程数值模拟

doi: 10.13700/j.bh.1001-5965.2017.0712
基金项目: 

航空科学基金 20132851034

详细信息
    作者简介:

    赵亮  男, 博士研究生。主要研究方向:固液相变温控技术

    邢玉明  男, 博士, 教授, 博士生导师。主要研究方向:相变储能技术、两相流分析

    通讯作者:

    邢玉明, E-mail:xym505@126.com

  • 中图分类号: TK11+4;V19

Numerical simulation of melting process of nanoparticle-enhanced phase change materials

Funds: 

Aeronautical Science Foundation of China 20132851034

More Information
  • 摘要:

    相变储能技术在航空航天等领域具有广泛的应用前景,但是相变材料导热性能差制约了其工程化应用。高导热的纳米材料能够有效提高相变材料的导热性能。为了对其相变现象进行更精细的模拟分析,基于Maxwell-Garnett等效介质理论(EMT)建立3种具有代表性结构的纳米复合相变材料详细物性参数,将流体体积(VOF)模型与焓-多孔介质模型相耦合,在考虑相变材料体积膨胀的情况下,数值模拟了纯石蜡、添加不同体积组分金刚石纳米粒子(ND)、单壁碳纳米管(SWCNT)和石墨烯纳米片(GnP)的纳米复合相变材料在定温边界条件下的固液相变过程。结果表明:相变材料熔化过程中对流效应主要分布在临近固液相界面、临近加热壁面及临近气液两相交界面这3个区域;3种纳米粒子中GnP的导热强化效果最佳,相比纯石蜡,添加体积分数为3%的GnP纳米复合相变材料固相导热系数提高了486%,相变材料的熔化时间缩短了69%;升高壁面温度能够有效缩短复合相变材料的熔化时间。

     

  • 图 1  二维物理模型[21]

    Figure 1.  Two-dimensional physical model[21]

    图 2  石蜡熔化过程中液相组分、温度及速度云图

    Figure 2.  Contours of liquid phase component, temperature and velocity of paraffin during melting process

    图 3  石蜡熔化过程中体积膨胀率及液相组分变化

    Figure 3.  Variation of volume expansion ratio and liquid phase component of paraffin during melting process

    图 4  相变材料熔化过程中液相组分变化

    Figure 4.  Variation of liquid phase component of phase change material during melting process

    图 5  相变材料熔化过程中液相组分、温度及速度云图

    Figure 5.  Contours of liquid phase component, temperature and velocity of phase change material during melting process

    图 6  不同体积分数GnP的复合相变材料熔化过程中液相组分变化

    Figure 6.  Variation of liquid phase component of composite phase change material with different volume fractions of GnP during melting process

    图 7  不同边界温度时复合相变材料熔化过程中液相组分变化

    Figure 7.  Variation of liquid phase component of composite phase change material with different boundary temperature during melting process

    表  1  纳米材料物性参数[6, 10, 25]

    Table  1.   Physical property parameters of nano materials[6, 10, 25]

    物性参数 ND SWCNT GnP
    ρnano/(kg·m-3) 3 300 1 100 2 200
    knano/(W·m-1·K-1) 2 200 3 500 3 500
    (cp)nano/(kJ·kg-1·K-1) 0.519 0.643 0.643
    βnano/(10-6K-1) 1 -0.3 -0.7
    下载: 导出CSV

    表  2  相变材料物性参数

    Table  2.   Physical property parameters of phase change materials

    物性参数 文献[27]中的相变材料 本文相变材料
    GnP体积分数为1% GnP体积分数为3% GnP体积分数为5% ND体积分数为3% SWCNT体积分数为3%
    ρsolidus/(kg·m-3) 850 863.5 890.5 917.5 923.5 857.5
    ρliquidus/(kg·m-3) 750 764.5 793.5 822.5 826.5 760.5
    ksolidus/(W·m-1·K-1) 0.22 0.51 1.069 1.601 0.244 0.877
    kliquidus/(W·m-1·K-1) 0.15 0.34 0.731 1.09 0.167 0.316
    cp/(kJ·kg-1·K-1) 2 630 2 610 2 570.4 2 530.6 2 566.7 2 570.4
    β/(10-6K-1) 1 000 990 970 950 970 960
    μ/(kg·m-1·s-1) 0.003 184 0.003 52 0.004 33 0.005 4 0.003 4 0.004 27
    L/(kJ·kg-1) 176 174.24 170.72 167.2 170.72 170.72
    下载: 导出CSV
  • [1] 张寅平, 胡汉平, 孔祥冬, 等.相变贮能:理论和应用[M].合肥:中国科学技术大学出版社, 1996:289-332.

    ZHANG Y P, HU H P, KONG X D, et al.Phase change energy storage:Theory and application[M].Hefei:Press of University of Science and Technology of China, 1996:289-332(in Chinese).
    [2] MIRÓ L, GASIA J, CABEZA L F.Thermal energy storage(TES) for industrial waste heat (IWH) recovery:A review[J].Applied Energy, 2016, 179:284-301. doi: 10.1016/j.apenergy.2016.06.147
    [3] WU S, LI T X, YAN T, et al.High performance form-stable expanded graphite/stearic acid composite phase change material for modular thermal energy storage[J].International Journal of Heat and Mass Transfer, 2016, 102:733-744. doi: 10.1016/j.ijheatmasstransfer.2016.06.066
    [4] BOSE P, AMIRTHAM V A.A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J].Renewable and Sustainable Energy Reviews, 2016, 65:81-100. doi: 10.1016/j.rser.2016.06.071
    [5] KRISHNA J, KISHORE P S, SOLOMON A B.Heat pipe with nano enhanced-PCM for electronic cooling application[J].Experimental Thermal and Fluid Science, 2017, 81:84-92. doi: 10.1016/j.expthermflusci.2016.10.014
    [6] LI T, LEE J H, WANG R, et al.Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J].International Journal of Heat and Mass Transfer, 2014, 75:1-11. doi: 10.1016/j.ijheatmasstransfer.2014.03.054
    [7] LI T, LEE J H, WANG R, et al.Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes[J].Energy, 2013, 55:752-761. doi: 10.1016/j.energy.2013.04.010
    [8] FANG X, FAN L W, DING Q, et al.Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J].Energy and Fuels, 2013, 27(7):4041-4047. doi: 10.1021/ef400702a
    [9] ARICI M, TVTVNCV E, KAN M, et al.Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls[J].International Journal of Heat and Mass Transfer, 2017, 104:7-17. doi: 10.1016/j.ijheatmasstransfer.2016.08.017
    [10] HARISH S, OREJON D, TAKATA Y, et al.Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J].Applied Thermal Engineering, 2015, 80:205-211. doi: 10.1016/j.applthermaleng.2015.01.056
    [11] MOTAHAR S, ALEMRAJABI A A, KHODABANDEH R.Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure[J].International Journal of Heat and Mass Transfer, 2017, 109:134-146. doi: 10.1016/j.ijheatmasstransfer.2017.01.109
    [12] 陈杨华, 李钰, 郭文帅, 等.石蜡基碳纳米管复合相变蓄冷材料的热性能研究[J].制冷学报, 2014, 35(5):110-113. doi: 10.3969/j.issn.0253-4339.2014.05.020

    CHEN Y H, LI Y, GUO W S, et al.Thermophysical properties of cool storage of paraffin-based composite phase change materials filled with carbon nanotubes[J].Jounal of Refrigeration, 2014, 35(5):110-113(in Chinese). doi: 10.3969/j.issn.0253-4339.2014.05.020
    [13] NAN C W.Effective-medium theory of piezoelectric composites[J].Journal of Applied Physics, 1994, 76(2):1155-1163. doi: 10.1063/1.357839
    [14] NAN C W, BIRRINGER R, CLARKE D R, et al.Effective thermal conductivity of particulate composites with interfacial thermal resistance[J].Journal of Applied Physics, 1997, 81(10):6692-6699. doi: 10.1063/1.365209
    [15] SANTAMARÍA-HOLEK I, MENDOZA C I.The rheology of concentrated suspensions of arbitrarily-shaped particles[J].Journal of Colloid and Interface Science, 2010, 346(1):118-126. doi: 10.1016/j.jcis.2010.02.033
    [16] DAS N, TAKATA Y, KOHNO M, et al.Melting of graphene based phase change nanocomposites in vertical latent heat thermal energy storage unit[J].Applied Thermal Engineering, 2016, 107:101-113. doi: 10.1016/j.applthermaleng.2016.06.166
    [17] AL-ABIDI A A, BIN MAT S, SOPIAN K, et al.CFD applications for latent heat thermal energy storage:A review[J].Renewable and Sustainable Energy Reviews, 2013, 20:353-363. doi: 10.1016/j.rser.2012.11.079
    [18] NASTAC L, ZHANG L, THOMAS B G, et al.CFD modeling and simulation in materials processing[C]//Proceedings of TMS2016 Annual Meeting.Berlin: Springer, 2016: 870202.
    [19] SATTARI H, MOHEBBI A, AFSAHI M M, et al.CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule[J].International Journal of Refrigeration, 2017, 73:209-218. doi: 10.1016/j.ijrefrig.2016.09.007
    [20] SOLOMON L, ELMOZUGHI A F, OZTEKIN A, et al.Effect of internal void placement on the heat transfer performance-Encapsulated phase change material for energy storage[J].Renewable Energy, 2015, 78:438-447. doi: 10.1016/j.renene.2015.01.035
    [21] 夏莉, 张鹏, 王如竹.具有自由表面的固-液相变的数值模拟与实验研究[J].热能动力工程, 2010, 25(5):505-509. http://d.old.wanfangdata.com.cn/Periodical/rndlgc201005008

    XIA L, ZHANG P, WANG R Z.Numerical simulation and experimental study of the solid-liquid phase change on free surface[J].Journal of Engineering for Thermal Energy & Power, 2010, 25(5):505-509(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rndlgc201005008
    [22] YE W B, ZHU D S, WANG N.Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions[J].Applied Thermal Engineering, 2012, 42:49-57. doi: 10.1016/j.applthermaleng.2012.03.002
    [23] KRIEGER I M, DOUGHERTY T J.A mechanism for non-Newtonian flow in suspensions of rigid spheres[J].Transactions of the Society of Rheology, 1959, 3(1):137-152. doi: 10.1122/1.548848
    [24] SMITH H.Transport phenomena[M]//KUPERMAN A W.Encyclopedia of applied physics.Weinhem: Wiley, 2003: 270-272.
    [25] KHODADADI J M, FAN L, BABAEI H.Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage:A review[J].Renewable and Sustainable Energy Reviews, 2013, 24:418-444. doi: 10.1016/j.rser.2013.03.031
    [26] DAS N, KOHNO M, TAKATA Y, et al.Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system[J].Applied Thermal Engineering, 2017, 125:880-890. doi: 10.1016/j.applthermaleng.2017.07.084
    [27] 吴淑英.纳米复合蓄热材料强化相变传热实验与数值模拟研究[D].广州: 华南理工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10561-2010227792.htm

    WU S Y.Enhanced heat transfer experimental and simulation research of nanocomposite phase change materials[D].Guangzhou: South China University of Technology, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10561-2010227792.htm
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  111
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-17
  • 录用日期:  2018-04-20
  • 网络出版日期:  2018-09-20

目录

    /

    返回文章
    返回
    常见问答