-
摘要:
针对特征词袋(BoF)模型缺乏空间和几何信息,对纹理图像内容表达不明显等问题,提出一种基于BoF模型的多特征融合纹理分类算法。将灰度梯度共生矩阵(GGCM)和尺度不变特征转换(SIFT)融合特征作为纹理图像的区域特征描述,通过动态权重鉴别能量分析进行最优参数特征选择,并用BoF量化纹理特征,使用支持向量机对图像进行训练和预测,得出分类结果。实验结果表明,本文算法对有旋转扭曲的纹理、边缘模糊纹理、有光照变化的纹理及杂乱纹理等均能取得较好的分类效果,相对于传统BoF模型及凹凸划分(CCP)方法等算法在UIUC纹理库上的分类正确率均有不同程度的提高,平均分类正确率分别提高12.8%和7.9%,说明本文算法针对纹理图像分类具有较高的精度和较好的鲁棒性。
-
关键词:
- 纹理分类 /
- 多特征融合 /
- 特征词袋(BoF) /
- 灰度梯度共生矩阵(GGCM) /
- 尺度不变特征转换(SIFT)
Abstract:The obvious shortcomings of bag of feature (BoF) model are lack of spatial and geometric information in image representation, and poor description of the content of texture image. To solve these problems, we proposed a texture image classification method based on BoF model with multi-feature fusion. The method fuses gray gradient co-occurrence matrix (GGCM) and scale-invariant feature transform (SIFT) as the basic feature description of texture image, uses a dynamic weight to identify energy analysis for the optimal parameter feature selection, quantifies texture feature by BoF, then applies support vector machine to train and predict the image, and finally obtains the classification results. The experimental results show that the proposed method has better performance of texture classification into rotated texture, twisted texture, edge fuzzy texture, light changing texture, messy texture, etc. The average classification accuracy of the proposed method on the UIUC texture database increases by 12.8% and 7.9% respectively compared with the conventional BoF model and concave-convex partition (CCP) methods, which indicates that the proposed method has higher accuracy and better robustness for texture image classification.
-
表 1 单一特征及其结合BoF模型分类正确率比较
Table 1. Comparison of classification accuracy of single feature and its BoF model
% 特征 分类正确率 GLCM GGCM 单一特征 75.8 87.8 结合BoF模型 78.3 90.6 表 2 特征词典容量对PBoFF算法分类性能的影响
Table 2. Effect of feature dictionary capacity on classification performance of PBoFF algorithm
词典容量 分类正确率/% 时间/s 58 94.4 3.688 821 116 96.5 5.364 589 290 98.4 15.394 532 580 98.1 33.014 725 -
[1] 周莉, 胡德文, 周宗潭.综合结构和纹理特征的场景识别[J].中国科学:信息科学, 2012, 42(6):687-702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201814936ZHOU L, HU D W, ZHOU Z T.Scene recognition combining structural and textural features[J].Scientia Sinica Informationis, 2012, 42(6):687-702(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201814936 [2] 刘丽, 匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报, 2009, 14(4):622-635. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a200904010LIU L, KUANG G Y.Overview of image textural feature extraction methods[J].Journal of Image and Graphics, 2009, 14(4):622-635(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a200904010 [3] 杨俊俐, 姜志国, 周全, 等.基于条件随机场的遥感图像语义标注[J].航空学报, 2015, 36(9):3069-3081. http://d.old.wanfangdata.com.cn/Periodical/hkxb201509029YANG J L, JIANG Z G, ZHOU Q, et al.Remote sensing image semantic labeling based on conditional random field[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3069-3081(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201509029 [4] MULLER S J, NIEKERK A V.Identification of WorldView-2 spectral and spatial factors in detecting salt accumulation in cultivated fields[J].Geoderma, 2016, 273:1-11. doi: 10.1016/j.geoderma.2016.02.028 [5] 曹琼, 郑红, 李行善.一种基于纹理特征的卫星遥感图像云探测方法[J].航空学报, 2007, 28(3):661-666. doi: 10.3321/j.issn:1000-6893.2007.03.029CAO Q, ZHENG H, LI X S.A method for detecting cloud in satellite remote sensing image based on texture[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(3):661-666(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.03.029 [6] ZHANG X, YANG Y H, HAN Z, et al.Object class detection:A survey[J].ACM Computing Survey, 2013, 46(1):1-53. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201411020 [7] 梁晔, 于剑, 刘宏哲.基于BoF模型的图像表示方法研究[J].计算机科学, 2014, 41(2):36-44. doi: 10.3969/j.issn.1002-137X.2014.02.008LIANG Y, YU J, LIU H Z.Study of BoF model based image representation[J].Computer Science, 2014, 41(2):36-44(in Chinese). doi: 10.3969/j.issn.1002-137X.2014.02.008 [8] SANTOS F L C D, PACI M, NANNI L, et al.Computer vision for virus image classification[J].Biosystems Engineering, 2015, 138(1):11-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0235606653 [9] NANNI L, MELUCCI M.Combination of projectors, standard texture descriptors and bag of features for classifying images[J].Neurocomputing, 2016, 173(1):1602-1614. http://www.sciencedirect.com/science/article/pii/S0925231215013405 [10] YUAN Y, LI B, MENG Q H.Improved bag of feature for automatic polyp detection in wireless capsule endoscopy images[J].IEEE Transactions on Automation Science & Engineering, 2015, 13(2):1-7. http://ieeexplore.ieee.org/document/7052426/ [11] CAO J, YU S, LIU H, et al.Hand posture recognition based on heterogeneous features fusion of multiple kernels learning[J].Multimedia Tools & Applications, 2015, 75(19):1-20. http://dl.acm.org/citation.cfm?id=2995855 [12] JOACHIMS T.A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization[C]//International Conference on Machine Learning, 1997: 143-151. http://www.mendeley.com/catalog/probabilistic-analysis-rocchio-algorithm-tfidf-text-categorization/ [13] MAJI S, BERG A C, MALIK J.Classification using intersection kernel support vector machines is efficient[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition DBLP.Piscataway, NJ: IEEE Press, 2008: 1-8. http://www.mendeley.com/research/classification-using-intersection-kernel-support-vectormachines-efficien/ [14] JURIE F, TRIGGS B.Creating efficient codebooks for visual recognition[C]//Proceedings of 10th IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2005: 604-610. http://www.mendeley.com/catalog/creating-efficient-codebooks-visual-recognition/ [15] 罗会兰, 郭敏杰, 孔繁胜.一种基于多级空间视觉词典集体的图像分类方法[J].电子学报, 2015, 43(4):684-693. doi: 10.3969/j.issn.0372-2112.2015.04.009LUO H L, GUO M J, KONG F S.An image classification method based on multiple level spatial visual dictionary ensemble[J].Acta Electronica Sinica, 2015, 43(4):684-693(in Chinese). doi: 10.3969/j.issn.0372-2112.2015.04.009 [16] JULESZ B.Textons, the elements of texture perception, and their interactions[J].Nature, 1981, 290(5802):91-97. doi: 10.1038/290091a0 [17] 洪继光.灰度-梯度共生矩阵纹理分析方法[J].自动化学报, 1984, 10(1):22-25. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MOTO198401004&dbname=CJFD&dbcode=CJFQHONG J G.Gray level-grandient cooccurrence matrix[J].Acta Automatica Sinica, 1984, 10(1):22-25(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MOTO198401004&dbname=CJFD&dbcode=CJFQ [18] 黎明, 鲁方波, 陈昊.基于QWT和GLCM的多特征双重加权纹理分割[J].模式识别与人工智能, 2014, 27(3):263-271. http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201403011LI M, LU F B, CHEN H.Dual weighted multi-feature texture segmentation based on QWT and GLCM[J].Pattern Recognition and Artificial Intelligence, 2014, 27(3):263-271(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/mssbyrgzn201403011 [19] LOWE D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110. doi: 10.1023/B:VISI.0000029664.99615.94 [20] CHANG C C, LIN C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-25. http://d.old.wanfangdata.com.cn/Periodical/jdq201315008 [21] LENG L, ZHANG J, XU J, et al.Dynamic weighted discrimination power analysis in DCT domain for face and palmprint recognition[C]//International Conference on Information and Communication Technology Convergence.Piscataway, NJ: IEEE Press, 2010: 467-471. http://ieeexplore.ieee.org/document/5674791 [22] HOSSAIN S, SERIKAWA S.Texture databases-A comprehensive survey[J].Pattern Recognition Letters, 2013, 34(15):2007-2022. doi: 10.1016/j.patrec.2013.02.009 [23] 毋小省, 朱世松, 孙君顶, 等.基于凹凸局部二值模式的纹理图像分类[J].光电子·激光, 2014, 25(8):1627-1634. http://qikan.cqvip.com/article/detail.aspx?id=662047017WU X S, ZHU S S, SUN J D, et al.Concave-convex local binary feature for rotation invriant texture classification[J].Journal of Optoelectronics·Laser, 2014, 25(8):1627-1634(in Chinese). http://qikan.cqvip.com/article/detail.aspx?id=662047017