-
摘要:
对航空发动机运行数据进行数据挖掘的方法,是发动机故障诊断研究领域的重要研究内容。由于各种算法自身的局限性,通过某种单一算法很难大幅度提升故障分类的准确性。运用组合分类的AdaBoost算法,综合多个分类模型进行诊断,是提升故障识别精度的一种较好的方法。通过AdaBoost算法及其改进算法的结合,建立一种多分类的AdaBoost算法,以支持向量机(SVM)为基础分类器,进行综合诊断模型的建立。通过单位向量法、比值系数法和相关系数法将指印图中统计的故障标识数据进行处理,得到不受故障程度影响的训练数据,再进行建模。实验表明,AdaBoost相关结合算法能够显著提升分类器性能。根据实际故障案例,验证了所建立的诊断模型能够较好地用于发动机的故障诊断。
Abstract:The data mining of aeroengine operational data is an important research for engine fault diagnosis. Due to the limitations of various algorithms, the accuracy of fault classification is difficult to be greatly enhanced with a single algorithm. Using a combination of classifications and diagnosis of multiple classification models, AdaBoost algorithm is a good method to improve the fault recognition accuracy. This paper combined the AdaBoost algorithm and its improved algorithm, and established a multi-classification AdaBoost algorithm. Support vector machine (SVM) was taken as the basic classifier, and a comprehensive diagnostic model was established. Fault identification data in statistics of fingerprint maps were processed with unit vector, ratio coefficient and correlation coefficient, and the training data for fault diagnosis with few effects of fault degrees were obtained. Then the model was constructed. The experimental results illustrate that the AdaBoost based combination algorithm can significantly improve the performance of classifier. With the actual fault cases, it is verified that the established diagnostic model can be well applied to engine fault diagnosis.
-
Key words:
- AdaBoost /
- support vector machine (SVM) /
- unit vector /
- ratio coefficient /
- correlation coefficient /
- fault diagnosis
-
表 1 PW4000指印图故障偏差数据
Table 1. Fault deviation data of PW4000 fingerprint map
故障序号 故障类别 ΔEGT/℃ ΔFF/% ΔN2/% ΔN1/% 1 +5℃ TAT -17.0 -1.4 -1.0 -1.0 2 -5℃ TAT 17.0 1.4 1.0 1.0 3 +0.02MACH 2.0 -2.2 -0.1 -0.1 4 -0.02MACH -2.0 2.2 0.1 0.1 5 +500 ALT 0 2.4 0 0 6 -500 ALT 0 -2.4 0 0 7 -2% HPC 12.0 1.6 0 0 24 -2% LPT -2.0 -2.1 0.7 -1.7 表 2 单位向量法故障标识
Table 2. Fault identification of unit vector method
故障序号 ΔEGT/℃ ΔFF/% ΔN2/% ΔN1/% ΔEGT/ΔFF 1 -0.993 -0.082 -0.058 -0.058 12 2 0.993 0.082 0.058 0.058 12 3 0.672 -0.739 -0.034 -0.034 -1 4 -0.672 0.739 0.034 0.034 -1 5 0 1 0 0 0 6 0 -1 0 0 0 7 0.991 0.132 0 0 8 24 -0.583 -0.612 0.204 -0.495 1 表 3 交叉验证法中最优参数下的正确率和经AdaBoost算法提升后的正确率
Table 3. Comparison between accuracy of cross-validation method with the best parameters and that improved by AdaBoost algorithm
% 故障诊断模型 弱分类器最高正确率 应用AdaBoost算法后正确率 比值系数法 77.00 97.3 相关系数法 70.10 87.50 单位向量法 64.38 86.52 单位向量法
(加入ΔEGT/ΔFF)83.04 87.45 表 4 相关系数法中数值相似的故障标识
Table 4. Numerical approximation fault identification of correlation coefficient method
故障序号 1 2 3 4 5 6 7 8 9 … 24 1 1 -1 -0.803 0.803 0.311 -0.311 -0.994 -0.995 -0.993 … 0.377 7 -0.994 0.994 0.734 -0.734 -0.208 0.208 1 0.999 0.999 … -0.435 8 -0.995 0.995 0.740 -0.740 -0.217 0.217 1 1 1 … -0.422 9 -0.994 0.994 0.734 -0.734 -0.208 0.208 0.999 1 1 … -0.405 24 0.377 -0.377 0.031 -0.031 -0.414 0.414 -0.435 -0.422 -0.405 … 1 表 5 案例诊断结果
Table 5. Cases' diagnosis results
故障诊断模型 故障序号 案例1 案例2 案例3 比值系数法(1) 7 7 20 比值系数法(2) 7 7 1 相关系数法(2) 8 7 1 单位向量法(1) 7 7 1 单位向量法(2) 7 12 1 单位向量法(加入ΔEGT/ΔFF)(2) 7 7 2 -
[1] WU X, KUMAR V.The top ten algorithms in data mining[M].Boca Raton:CRC Press, 2009:127-149. [2] 曹莹, 苗启广, 刘家辰, 等.AdaBoost算法研究进展与展望[J].自动化学报, 2013, 39(6):745-758. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013071700083447CAO Y, MIAO Q G, LIU J C, et al.Advance and prospects of AdaBoost algorithm[J].Acta Automatica Sinica, 2013, 39(6):745-758(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013071700083447 [3] 徐启华, 杨瑞.基于AdaBoost算法的故障诊断仿真研究[J].计算机工程与设计, 2005, 26(12):3210-3212. doi: 10.3969/j.issn.1000-7024.2005.12.016XU Q H, YANG R.Simulation research on fault diagnosis using AdaBoost algorithm[J].Computer Engineering and Design, 2005, 26(12):3210-3212(in Chinese). doi: 10.3969/j.issn.1000-7024.2005.12.016 [4] 夏利民, 戴汝为.基于Boosting模糊分类的滚动轴承故障诊断[J].模式识别与人工智能, 2003, 16(3):323-327. doi: 10.3969/j.issn.1003-6059.2003.03.011XIA L M, DAI R W.Fault testing on rolling bearing based on Boosting fuzzy classification[J].Pattern Recognition and Artificial Intelligence, 2003, 16(3):323-327(in Chinese). doi: 10.3969/j.issn.1003-6059.2003.03.011 [5] 孙超英, 刘鲁, 刘传武.基于Boosting-SVM算法的航空发动机故障诊断[J].航空动力学报, 2010, 25(11):2584-2588. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201011027SUN C Y, LIU L, LIU C W.Aero-engine fault diagnosis based on Boosting-SVM[J].Journal of Aerospace Power, 2010, 25(11):2584-2588(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201011027 [6] 胡金海, 谢寿生, 蔡开龙, 等.Diverse AdaBoost-SVM分类方法及其在航空发动机故障诊断中的应用[J].航空学报, 2007, 28(5):1085-1090. doi: 10.3321/j.issn:1000-6893.2007.05.010HU J H, XIE S S, CAI K L, et al.Classification method of diverse AdaBoost-SVM and its application to fault diagnosis of aero-engine[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1085-1090(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.05.010 [7] 胡金海, 骆广琦, 李应红, 等.一种基于指数损失函数的多类分类AdaBoost算法及其应用[J].航空学报, 2008, 29(4):811-816. doi: 10.3321/j.issn:1000-6893.2008.04.007HU J H, LUO G Q, LI Y H, et al.An AdaBoost algorithm for multi-class classification based on exponential loss function and its application[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(4):811-816(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.04.007 [8] KEARNS M, VALIANT L.Cryptographic limitations on learning Boolean formulae and finite automata[J].Journal of the ACM, 1994, 41(1):67-95. doi: 10.1145/174644.174647 [9] FREUND Y, SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to Boosting[J].Journal of Computer and System Sciences, 1997, 55(1):119-139. doi: 10.1006/jcss.1997.1504 [10] FREUND Y, SCHAPIRE R E.Experiments with a new Boosting algorithm[C]//Proceedings of the 13th Conference on Machine Learning, 1996: 148-156. [11] 李斌, 王紫石, 汪卫, 等.AdaBoost算法的一种改进方法[J].小型微型计算机系统, 2004, 25(5):869-871. doi: 10.3969/j.issn.1000-1220.2004.05.020LI B, WANG Z S, WANG W, et al.Enhancing method for AdaBoost[J].Mini-Micro Systems, 2004, 25(5):869-871(in Chinese). doi: 10.3969/j.issn.1000-1220.2004.05.020 [12] 廖红文, 周德龙.AdaBoost及其改进算法综述[J].计算机系统应用, 2012, 21(5):240-244. http://d.old.wanfangdata.com.cn/Periodical/jsjxtyy201205056LIAO H W, ZHOU D L.Review of AdaBoost and its improvement[J].Computer Systems & Applications, 2012, 21(5):240-244(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjxtyy201205056 [13] ZHU J, ZOU H, ROSSET S, et al.Multi-class AdaBoost[J].Statistics and Its Interface, 2009, 2(3):349-360. doi: 10.4310/SII.2009.v2.n3.a8 [14] 李应红, 尉询楷.航空发动机的智能诊断、建模与预测方法[M].北京:科学出版社, 2013:82-85.LI Y H, WEI X K.The methods of aero-engine's modeling, intelligent fault diagnosis and prognosis[M].Beijing:Science Press, 2013:82-85(in Chinese). [15] FRIEDMAN J, HASTIE T, TIBSHIRANI R.Additive logistic regression:A statistical view of boosting[J].Annals of Statistics, 2000, 28(2):337-407. doi: 10.1214-aos-1016218223/ [16] 张卓.基于SVM多分类的PW4000故障诊断研究[D].天津: 中国民航大学, 2015: 42-49.ZHANG Z.Research on fault diagnosis of PW4000 based on SVM multi-classification[D].Tianjin: Civil Aviation University of China, 2015: 42-49(in Chinese). [17] 杨新武, 马壮, 袁顺.基于弱分类器调整的多分类AdaBoost算法[J].电子与信息学报, 2016, 38(2):373-380. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201602018YANG X W, MA Z, YUAN S.Multi-class AdaBoost algorithm based on the adjusted weak classifier[J].Journal of Electronics & Information Technology, 2016, 38(2):373-380(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201602018 [18] 曹惠玲, 庞思凯, 薛鹏, 等.基于双发差异的航空发动机故障诊断方法研究[J].中国民航大学学报, 2014, 32(3):41-44. doi: 10.3969/j.issn.1674-5590.2014.03.010CAO H L, PANG S K, XUE P, et al.Research of aero-engine fault diagnosis method based on monitoring of twin differences[J].Journal of Civil Aviation University of China, 2014, 32(3):41-44(in Chinese). doi: 10.3969/j.issn.1674-5590.2014.03.010