留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下相变储能单元融化过程数值模拟

阮世庭 张济民 曹建光 王江 徐涛

阮世庭, 张济民, 曹建光, 等 . 微重力下相变储能单元融化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(10): 2224-2231. doi: 10.13700/j.bh.1001-5965.2017.0791
引用本文: 阮世庭, 张济民, 曹建光, 等 . 微重力下相变储能单元融化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(10): 2224-2231. doi: 10.13700/j.bh.1001-5965.2017.0791
RUAN Shiting, ZHANG Jimin, CAO Jianguang, et al. Numerical simulation of melting process of phase change energy storage unit under microgravity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2224-2231. doi: 10.13700/j.bh.1001-5965.2017.0791(in Chinese)
Citation: RUAN Shiting, ZHANG Jimin, CAO Jianguang, et al. Numerical simulation of melting process of phase change energy storage unit under microgravity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2224-2231. doi: 10.13700/j.bh.1001-5965.2017.0791(in Chinese)

微重力下相变储能单元融化过程数值模拟

doi: 10.13700/j.bh.1001-5965.2017.0791
基金项目: 

国家自然科学基金 51406122

详细信息
    作者简介:

    阮世庭  男, 硕士研究生。主要研究方向:航天器相变热控技术

    曹建光  男, 博士, 研究员, 硕士生导师。主要研究方向:航天器热控技术

    通讯作者:

    曹建光, E-mail:cao_jianguang@163.com

  • 中图分类号: TK02

Numerical simulation of melting process of phase change energy storage unit under microgravity

Funds: 

National Natural Science Foundation of China 51406122

More Information
  • 摘要:

    为探究微重力环境中,通过肋片强化了传热的相变储能单元中相变材料融化过程,通过数值模拟方法探究了微重力作用时相变材料融化过程中传热特性。通过地面实验与重力作用下数值模拟结果对比验证数值模拟方法的准确性,对比重力和微重力作用2种情况下数值模拟结果以揭示微重力环境中相变材料融化过程的特性。结果表明,当相变储能单元受微重力作用时,相变材料融化速率明显下降,热量主要通过热传导传递,融化的相变材料从顶端膨胀溢出向空间扩散,局部低温区域在相变储能单元中上部。

     

  • 图 1  计算单元

    Figure 1.  Computational unit

    图 2  网格无关性验证和网格划分

    Figure 2.  Grid independence verification and grid partition

    图 3  实验装置

    Figure 3.  Experimental setup

    图 4  相变材料融化过程数值模拟与实验结果对比

    Figure 4.  Comparison of numerical simulation and experimental results for melting process of phase change material

    图 5  液相质量分数随时间变化

    Figure 5.  Liquid fraction versus time

    图 6  边界热流密度随时间变化

    Figure 6.  Heat flux density versus time

    图 7  相变材料融化过程中速度分布

    Figure 7.  Velocity distribution for melting process of phase change material

    图 8  相变材料融化过程中温度分布

    Figure 8.  Temperature distribution for melting process of phase change material

    图 9  相变材料融化过程中固-液两相分布

    Figure 9.  Solid-liquid distribution for melting process of phase change material

    表  1  各物质物性参数

    Table  1.   Physical parameters of various materials

    物质 导热系数/
    (W·m-1·K-1)
    密度/
    (kg·m-3)
    比热/(J·kg-1·K-1) 动力黏度/
    (kg·m-1·s-1)
    相变温度/℃ 相变潜热/
    (kJ·kg-1)
    十八烷 0.1507 2160 0.00346 27~29 244
    202.4 2719 871
    空气 2.42×10-5 1.2×10-8T2-1.134×10-5+3.498×10-3 1.006
    下载: 导出CSV
  • [1] 闵桂荣, 郭舜.航天器热控制[M].北京:科学出版社, 1998:320-357.

    MIN G R, GUO S.Thermal control technology of spacecraft[M]. Beijing:Science Press, 1998:320-357(in Chinese).
    [2] 王磊, 菅鲁京.相变材料在航天器上的应用[J].航天器环境工程, 2013, 30(5):522-528. doi: 10.3969/j.issn.1673-1379.2013.05.013

    WANG L, JIAN L J.Application of phase change materials in spacecraft[J]. Spacecraft Environment Engineering, 2013, 30(5):522-528(in Chinese). doi: 10.3969/j.issn.1673-1379.2013.05.013
    [3] 侯增祺, 胡金刚.航天器热控制技术原理及其应用[M].北京:中国科学技术出版社, 2007:177-188.

    HOU Z Q, HU J G.Principle and application of thermal control technology of spacecraft[M]. Beijing:China Science and Technology Press, 2007:177-188(in Chinese).
    [4] LEIMKUEHLER T O, STEPHAN R A, HANSEN S.Development, testing, and failure mechanisms of a replicative ice phase change material heat exchanger[C]//40th International Conference on Enviromental Systems.Reston: AIAA, 2010: 1-14.
    [5] LEE S A, LEIMKUEHLER T O, STEPHAN R A, et al.Thermal vacuum test of ice as a phase change material integrated with a radiator[C]//40th International Conference on Enviromental Systems.Reston: AIAA, 2010: 1-10.
    [6] YE W B, ZHU D S, WANG N.Numerical simulation on phase-change thermal storage/release in a plate-fin unit[J]. Applied Thermal Engineering, 2011, 31(1):3871-3884.
    [7] YE W B, ZHU D S, WANG N.Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions[J]. Applied Thermal Engineering, 2012, 42(3):49-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0226609061
    [8] ISMAIL K A R, ALVES C L F, MODESTO M S.Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering, 2001, 21(1):53-77. doi: 10.1016/S1359-4311(00)00002-8
    [9] ABDULJALIL A A, MAT S, SOPIAN K, et al.Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat and Mass Transfer, 2013, 61(1):684-695. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229860515
    [10] ASSIS E, KATSMAN L, ZISKIND G, et al.Numerical and experimental study of melting in a spherical shell[J]. International Journal of Heat and Mass Transfer, 2007, 50(9-10):1790-1804. doi: 10.1016/j.ijheatmasstransfer.2006.10.007
    [11] ASSIS E, ZISKIND G, LETAN R.Numerical and experimental study of solidification in a spherical shell[J]. Journal of Heat Transfer, 2009, 131(2):273-289. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028171163
    [12] HUMPHRIES W R, GRIGGS E I.A design handbook for phase change thermal control and energy storage devices[M]. New York:NASA Scientific and Technical Information Office, 1977:155-160.
    [13] BERTRAND O, BINET B, COMBEAU H, et al.Melting driven by natural convection.A comparison exercise:First results[J]. International Journal of Thermal Science, 1999, 38(1):5-26. doi: 10.1016/S0035-3159(99)80013-0
    [14] BRENT A D, VOLLER V R, REID K J.Enthalpy-porosity technique for modeling convection-diffusion phase change:Application to the melting of a pure metal[J]. Numerical Heat Transfer, 1988, 13(3):297-318. doi: 10.1080/10407788808913615
    [15] SHATIKIAN V, ZISKIND G, LETAN R.Numerical investigation of a PCM-based heat sink with internal fins[J]. International Journal of Heat and Mass Transfer, 2005, 48(17):3689-3706. doi: 10.1016/j.ijheatmasstransfer.2004.10.042
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  603
  • HTML全文浏览量:  122
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 录用日期:  2018-03-16
  • 网络出版日期:  2018-10-20

目录

    /

    返回文章
    返回
    常见问答