留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均质壁面对液滴俘获能力的数值模拟研究

张莹 卢敏 李培生 许术方 刘强 黄杰

张莹, 卢敏, 李培生, 等 . 非均质壁面对液滴俘获能力的数值模拟研究[J]. 北京航空航天大学学报, 2018, 44(10): 2021-2027. doi: 10.13700/j.bh.1001-5965.2017.0799
引用本文: 张莹, 卢敏, 李培生, 等 . 非均质壁面对液滴俘获能力的数值模拟研究[J]. 北京航空航天大学学报, 2018, 44(10): 2021-2027. doi: 10.13700/j.bh.1001-5965.2017.0799
ZHANG Ying, LU Min, LI Peisheng, et al. Numerical simulation of drop capturing capabilities on heterogeneous walls[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2021-2027. doi: 10.13700/j.bh.1001-5965.2017.0799(in Chinese)
Citation: ZHANG Ying, LU Min, LI Peisheng, et al. Numerical simulation of drop capturing capabilities on heterogeneous walls[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2021-2027. doi: 10.13700/j.bh.1001-5965.2017.0799(in Chinese)

非均质壁面对液滴俘获能力的数值模拟研究

doi: 10.13700/j.bh.1001-5965.2017.0799
基金项目: 

国家自然科学基金 11562011

国家自然科学基金 51566012

江西省研究生创新专项资金 YC2018-S059

详细信息
    作者简介:

    张莹  女, 博士, 教授, 博士生导师。主要研究方向:复杂热流体数值模拟

    李培生  男,博士,教授,博士生导师。主要研究方向:固体废物、生物质、煤的清洁燃烧及资源化利用

    通讯作者:

    李培生, E-mail:ncudns1995z@163.com

  • 中图分类号: O359.1

Numerical simulation of drop capturing capabilities on heterogeneous walls

Funds: 

National Natural Science Foundation of China 11562011

National Natural Science Foundation of China 51566012

Innovation Fund Designated for Graduate Students of Jiangxi Province YC2018-S059

More Information
  • 摘要:

    为研究不同非均质壁面对液滴的俘获能力,采用界面追踪法(FTM)结合广义滑移边界建立了接触角模型,对液滴在非均匀润湿的非均质壁面上的运动过程进行了数值模拟研究。液滴在倾斜壁面上受到重力作用由均匀润湿部分下滑至非均匀润湿部分,通过改变Bo数、Oh数、非均匀润湿程度研究了液滴在非均匀润湿区域的运动规律。研究表明:Bo数越大,液滴运动受壁面阻力影响越小,液滴下滑的速度越快,液滴越难以被俘获;Oh数越大,液滴运动受壁面阻力影响越小,液滴越难以被俘获;非均匀润湿程度越大,非均质壁面对液滴的阻力越大,液滴越易被俘获。

     

  • 图 1  液滴形变程度随Bo数变化

    Figure 1.  Variation of droplet deformation degree with Bo number

    图 2  物理模型

    Figure 2.  Physical model

    图 3  接触点的速度与位移随时间变化

    Figure 3.  Variation of contact point velocity and displacement with time

    图 4  不同Bo数下液滴前接触点位置随时间变化

    Figure 4.  Variation of drop's front contact point position withtime under different Bo number

    图 5  不同润湿差异下液滴前接触点位置随时间变化

    Figure 5.  Variation of drop's front contact point position with time under different wetting differences

    图 6  不同Oh数下液滴前接触点位置随时间变化

    Figure 6.  Variation of drop's front contact point position with time under different Oh number

  • [1] MANNETJE D T, GHOSH S, LAGRAAUW R, et al.Trapping of drops by wetting defects[J].Nature Communications, 2014, 5(4):3559. http://cn.bing.com/academic/profile?id=7f47e5b1921d77ebe7d0fc8319cb16d2&encoded=0&v=paper_preview&mkt=zh-cn
    [2] PRIEST C, SEDEV R, RALSTON J.A quantitative experimental study of wetting hysteresis on discrete and continuous chemical heterogeneities[J].Colloid & Polymer Science, 2013, 291(2):271-277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228578262
    [3] SBRAGAGLIA M, BIFERALE L, AMATI G, et al.Sliding drops across alternating hydrophobic and hydrophilic stripes[J].Physical Review E, 2014, 89(1):12406. doi: 10.1103/PhysRevE.89.012406
    [4] DESIMONE A, GRUNEWALD N, OTTO F.A new model for contact angle hysteresis[J].Networks & Heterogeneous Media, 2017, 2(2):211-225. http://cn.bing.com/academic/profile?id=a439181e7fca3aa509724a6ae8e5fbea&encoded=0&v=paper_preview&mkt=zh-cn
    [5] CONINCK J D, DUNLOP F, HUILLET T.Contact angles of a drop pinned on an incline[J].Physical Review E, 2017, 95(5):052805. doi: 10.1103/PhysRevE.95.052805
    [6] BUSSMANN M, CHANDRA S, MOSTAGHIMI J.Modeling the splash of a droplet impacting a solid surface[J].Physics of Fluids, 2000, 12(12):3121-3132. doi: 10.1063/1.1321258
    [7] FUKAI J, SHⅡBA Y, YAMAMOTO T, et al.Wetting effects on the spreading of a liquid droplet colliding with a flat surface:Experiment and modeling[J].Physics of Fluids, 1995, 7(2):236-247. doi: 10.1063/1.868622
    [8] SPELT P D M.A level-set approach for simulations of flows with multiple moving contact lines with hysteresis[J].Journal of Computational Physics, 2005, 207(2):389-404. doi: 10.1016/j.jcp.2005.01.016
    [9] KHATAVKAR V V, ANDERSON P D, DUINEVELD P C, et al.Diffuse-interface modelling of droplet impact[J].Journal of Fluid Mechanics, 2007, 581:97-127. doi: 10.1017/S002211200700554X
    [10] UNVERDI S O, TRYGGVASON G.A front-tracking method for viscous, incompressible, multi-fluid flows[J].Journal of Computational Physics, 1992, 100(1):25-37. doi: 10.1016/0021-9991(92)90307-K
    [11] YAMAMOTO Y, ITO T, WAKIMOTO T, et al.Numerical simulations of spontaneous capillary rises with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition[J].International Journal of Multiphase Flow, 2013, 51(3):22-32. http://cn.bing.com/academic/profile?id=076960068fa3c43c40ffa725757b550e&encoded=0&v=paper_preview&mkt=zh-cn
    [12] YAMAMOTO Y, TOKIEDA K, WAKIMOTO T.Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic-microscopic contact angle relation and generalized Navier boundary condition[J].International Journal of Multiphase Flow, 2014, 59:106-112. doi: 10.1016/j.ijmultiphaseflow.2013.10.018
    [13] MURADOGLU M, TASOGLU S.A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls[J].Computers & Fluids, 2010, 39(4):615-625. http://cn.bing.com/academic/profile?id=e5611b078021cf5c63b9ebaaf95ad813&encoded=0&v=paper_preview&mkt=zh-cn
    [14] HUANG H, LIANG D, WETTON B.Computation of a moving drop/bubble on a solid surface using a front-tracking method[J].Communications in Mathematical Sciences, 2004, 2(4):535-552. doi: 10.4310/CMS.2004.v2.n4.a1
    [15] QUIAN T, WANG X P, SHENG P.Generalized Navier boundary condition for the moving contact line[J].Communications in Mathematical Sciences, 2003, 1(2):333-341. doi: 10.4310/CMS.2003.v1.n2.a7
  • 加载中
图(6)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  8
  • PDF下载量:  445
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 录用日期:  2018-03-23
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回
    常见问答