-
摘要:
针对复杂装备风险传导关系描述不清晰的问题,构建了风险传导不确定随机多传递参量图形评审技术(UR-MTPGERT)网络模型。首先,基于机会理论,定义了不确定随机变量的矩母函数,并在此基础上构建了UR-MTPGERT网络模型。其次,为刻画复杂装备的微观风险信息,在模型中引入系统风险度、风险元重要度、风险路径关联度等解析参数。然后,求解矩母函数时,采用德尔菲法处理专家经验数据,得到经验不确定分布,并利用极大熵模型处理随机数据,得到概率密度函数;引入矩阵分析技术,解决了网络拓扑分析困难的问题,在此基础上计算网络参数。最后,对某型飞机进行安全性分析,结果表明,该模型能清晰反映风险元间的关系,可以为复杂装备的风险分析、预判和安全控制提供借鉴。
-
关键词:
- 复杂装备风险 /
- 风险传导 /
- 不确定随机多传递参量图形评审技术(UR-MTPGERT) /
- 机会理论 /
- 矩阵分析
Abstract:Aimed at the problem of unclear description of the conduction relationship of complex equipment risks, a risk conduction uncertain random multi-transfer parameter graph evaluation and review technique (UR-MTPGERT) model is constructed. First, based on the opportunity theory, the moment function of uncertain random variables is defined, and then a multi-transter parameter UR-MTPGERT network is constructed. Second, to describe the micro-risk information of complex equipment systems, analytic parameters are introduced in the model including the degree of risk, the importance of risk primitives and the degree of relevance of risk paths. Then, when solving the moment function, the Delphi method is used to process the expert empirical data to obtain the empirical uncertainty distribution, and the maximum entropy model is used to process the random data. The probability density function is obtained. The matrix analysis technique is introduced to solve the problem of difficult network topology analysis. On this basis, the network parameters are calculated. Finally, the safety analysis of a certain type of aircraft is carried out. The results show that the model can clearly reflect the relationship between risk elements and provide reference for the risk analysis, prediction and safety control of complex equipment.
-
表 1 操纵子系统的物理部件风险度样本
Table 1. Risk degree samples of physical components of operating subsystem
时段 风险度h1/10-6 1 0.42 2 0.58 3 0.57 4 0.22 5 0.80 6 0.35 7 0.87 8 0.64 9 0.56 10 0.59 11 0.38 12 0.55 13 0.63 14 0.65 15 0.69 16 0.80 17 0.57 18 0.39 19 0.89 20 0.61 21 0.49 22 0.61 23 0.31 24 0.58 表 2 子系统与模型代号对应关系
Table 2. Correspondence of subsystem and model code
代号 子系统 1 环控子系统 2 操纵子系统 3 结构子系统 4 液压子系统 5 供电子系统 6 导航子系统 7 推进子系统 -
[1] 闻敬谦, 李青.基于工作流的航空装备综合维修保障管理[J].计算机集成制造系统, 2010, 16(10):2196-2205. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201010025WEN J Q, LI Q.A comprehensive maintenance support management of aviation equipment based on workflow[J].Computer Integrated Manufacturing Systems, 2010, 16(10):2196-2205(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201010025 [2] 查尔斯·佩罗.高风险技术与"正常事故"[M].北京:科学技术文献出版社, 1988.PERROW C.High-risk technology and "normal" accidents[M].Beijing:Science and Technology Literature Press, 1988(in Chinese). [3] 郭鹏.航空武器装备全寿命周期风险评估方法比较与改进[J].航空学报, 2003, 24(5):427-430. doi: 10.3321/j.issn:1000-6893.2003.05.010GUO P.Comparison and improvement of life-cycle risk assessment methods for aviation weapon equipment[J].Acta Aeronautica et Astronautica Sinica, 2003, 24(5):427-430(in Chinese). doi: 10.3321/j.issn:1000-6893.2003.05.010 [4] LI C, WANG K.The risk element transmission theory research of multi-objective risk-time-cost trade-off[J].Computers & Mathematics with Applications, 2009, 57(11-12):1792-1799. [5] LI X, ZHAO T, RONG M. A multi-factor coupling event chain model based on Petri nets[C]//International Conference on Reliability, Maintainability and Safety. Piscataway, NJ: IEEE Press, 2009: 466-469. [6] 李晓磊, 田瑾, 赵廷弟.改进的区域安全性分析方法[J].航空学报, 2008, 29(3):622-626. doi: 10.3321/j.issn:1000-6893.2008.03.014LI X L, TIAN J, ZHAO T D.An improved method of regional safety analysis[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):622-626(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.014 [7] QU J F, LI G, ZHANG S L.Study on system coupling effects of ecological and economic in mining subsidence reclamation area[J].Advanced Materials Research, 2013, 610-613:1315-1320. https://www.scientific.net/amr.610-613.1315.pdf [8] LUO P, HU Y.System risk evolution analysis and risk critical event identification based on event sequence diagram[J].Reliability Engineering & System Safety, 2013, 114(1):36-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229643604 [9] MIGUEL A, BEDIA M G, BARANDIARAN X E.Extended neural metastability in an embodied model of sensorimotor coupling[J].Frontiers in Systems Neuroscience, 2016, 10(117):76. doi: 10.3389/fnsys.2016.00076/full [10] PRITSKER A.Graphical evaluation and review technique[M].Berlin:Springer, 2001. [11] 李超, 王瑛, 陈超, 等.基于QHSME的装备危险耦合传导GERT分析[J].系统工程与电子技术, 2014, 36(11):2219-2225. doi: 10.3969/j.issn.1001-506X.2014.11.17LI C, WANG Y, CHEN C, et al.GERT analysis of coupled conduction for materiel hazard based on QHSME[J].Systems Engineering & Electronics, 2014, 36(11):2219-2225(in Chinese). doi: 10.3969/j.issn.1001-506X.2014.11.17 [12] LIU B.Uncertainty distribution and independence of uncertain processes[J].Fuzzy Optimization & Decision Making, 2014, 13(3):259-271. https://www.researchgate.net/publication/264313725_Uncertainty_distribution_and_independence_of_uncertain_processes [13] LIU B, CHEN X.Uncertain multiobjective programming and uncertain goal programming[J].Journal of Uncertainty Analysis & Applications, 2015, 3(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/ycxxb200502007 [14] LIU Y, HA M.Expected value of function of uncertain variables[J].Journal of Uncertain Systems, 2010, 3(4):181-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003097748 [15] LIU B, YAO K.Uncertain multilevel programming:Algorithm and applications[J].Computers & Industrial Engineering, 2015, 89:235-240. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234742418/ [16] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E.Maximum entropy modeling of species geographic distributions[J].Ecological Modelling, 2006, 190(3-4):231-259. doi: 10.1016/j.ecolmodel.2005.03.026 [17] YEO G, BURGE C B.Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals[J].Journal of Computational Biology:A Journal of Computational Molecular Cell Biology, 2004, 11(2-3):377-394. doi: 10.1089/1066527041410418 [18] 陶良彦, 刘思峰, 方志耕, 等.GERT网络的矩阵式表达及求解模型[J].系统工程与电子技术, 2017, 39(6):1292-1297. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706017TAO L Y, LIU S F, FANG Z G, et al.Matrix expression and solution model of GERT network[J].Systems Engineering and Electronics, 2017, 39(6):1292-1297(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706017 [19] 罗涛.信号与系统分析的流图矩阵法[J].通信学报, 1993, 14(6):73-79. http://d.old.wanfangdata.com.cn/Conference/316581LUO T.Analysis of signals and systems by flow graph matrix method[J].Journal of China Institute of Communications, 1993, 14(6):73-79(in Chinese). http://d.old.wanfangdata.com.cn/Conference/316581 [20] 刘璐, 单梁, 戴跃伟, 等.非线性动态自适应旋转角的量子菌群算法[J].控制与决策, 2017, 32(12):2137-2144. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201712003LIU L, SHAN L, DAI Y W, et al.Quantum germ algorithm for nonlinear dynamic adaptive rotation angle[J].Control & Decision, 2017, 32(12):2137-2144(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzyjc201712003