留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于UR-MTPGERT网络模型的复杂装备风险传导分析

孙贇 王瑛 李超

孙贇, 王瑛, 李超等 . 基于UR-MTPGERT网络模型的复杂装备风险传导分析[J]. 北京航空航天大学学报, 2018, 44(8): 1587-1595. doi: 10.13700/j.bh.1001-5965.2017.0800
引用本文: 孙贇, 王瑛, 李超等 . 基于UR-MTPGERT网络模型的复杂装备风险传导分析[J]. 北京航空航天大学学报, 2018, 44(8): 1587-1595. doi: 10.13700/j.bh.1001-5965.2017.0800
SUN Yun, WANG Ying, LI Chaoet al. Complex equipment risk conduction analysis based on UR-MTPGERT model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1587-1595. doi: 10.13700/j.bh.1001-5965.2017.0800(in Chinese)
Citation: SUN Yun, WANG Ying, LI Chaoet al. Complex equipment risk conduction analysis based on UR-MTPGERT model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1587-1595. doi: 10.13700/j.bh.1001-5965.2017.0800(in Chinese)

基于UR-MTPGERT网络模型的复杂装备风险传导分析

doi: 10.13700/j.bh.1001-5965.2017.0800
基金项目: 

国家自然科学基金 71601183

详细信息
    作者简介:

    孙贇  男, 硕士研究生。主要研究方向:复杂系统、安全性分析与控制

    王瑛  女, 博士, 教授, 博士生导师。主要研究方向:复杂系统建模与仿真

    李超  男, 博士, 讲师。主要研究方向:复杂系统、安全性分析与控制

    通讯作者:

    王瑛, E-mail: yingwangkgd@163.com

  • 中图分类号: V37;X949

Complex equipment risk conduction analysis based on UR-MTPGERT model

Funds: 

National Natural Science Foundation of China 71601183

More Information
  • 摘要:

    针对复杂装备风险传导关系描述不清晰的问题,构建了风险传导不确定随机多传递参量图形评审技术(UR-MTPGERT)网络模型。首先,基于机会理论,定义了不确定随机变量的矩母函数,并在此基础上构建了UR-MTPGERT网络模型。其次,为刻画复杂装备的微观风险信息,在模型中引入系统风险度、风险元重要度、风险路径关联度等解析参数。然后,求解矩母函数时,采用德尔菲法处理专家经验数据,得到经验不确定分布,并利用极大熵模型处理随机数据,得到概率密度函数;引入矩阵分析技术,解决了网络拓扑分析困难的问题,在此基础上计算网络参数。最后,对某型飞机进行安全性分析,结果表明,该模型能清晰反映风险元间的关系,可以为复杂装备的风险分析、预判和安全控制提供借鉴。

     

  • 图 1  装备服役风险传导网络模型

    Figure 1.  Equipment service risk conduction network model

    图 2  风险传导UR-MTPGERT基本单元构成示意图

    Figure 2.  Schematic of basic unit structure of risk conduction UR-MTPGERT

    图 3  各算法优化曲线比较

    Figure 3.  Comparison of optimization curves of various algorithms

    图 4  某型飞机风险传导UR-MTPGERT网络示意图

    Figure 4.  Schematic of risk conduction UR-MTPGERT network of a certain type of aircraft

    表  1  操纵子系统的物理部件风险度样本

    Table  1.   Risk degree samples of physical components of operating subsystem

    时段风险度h1/10-6
    10.42
    20.58
    30.57
    40.22
    50.80
    60.35
    70.87
    80.64
    90.56
    100.59
    110.38
    120.55
    130.63
    140.65
    150.69
    160.80
    170.57
    180.39
    190.89
    200.61
    210.49
    220.61
    230.31
    240.58
    下载: 导出CSV

    表  2  子系统与模型代号对应关系

    Table  2.   Correspondence of subsystem and model code

    代号子系统
    1环控子系统
    2操纵子系统
    3结构子系统
    4液压子系统
    5供电子系统
    6导航子系统
    7推进子系统
    下载: 导出CSV
  • [1] 闻敬谦, 李青.基于工作流的航空装备综合维修保障管理[J].计算机集成制造系统, 2010, 16(10):2196-2205. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201010025

    WEN J Q, LI Q.A comprehensive maintenance support management of aviation equipment based on workflow[J].Computer Integrated Manufacturing Systems, 2010, 16(10):2196-2205(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201010025
    [2] 查尔斯·佩罗.高风险技术与"正常事故"[M].北京:科学技术文献出版社, 1988.

    PERROW C.High-risk technology and "normal" accidents[M].Beijing:Science and Technology Literature Press, 1988(in Chinese).
    [3] 郭鹏.航空武器装备全寿命周期风险评估方法比较与改进[J].航空学报, 2003, 24(5):427-430. doi: 10.3321/j.issn:1000-6893.2003.05.010

    GUO P.Comparison and improvement of life-cycle risk assessment methods for aviation weapon equipment[J].Acta Aeronautica et Astronautica Sinica, 2003, 24(5):427-430(in Chinese). doi: 10.3321/j.issn:1000-6893.2003.05.010
    [4] LI C, WANG K.The risk element transmission theory research of multi-objective risk-time-cost trade-off[J].Computers & Mathematics with Applications, 2009, 57(11-12):1792-1799.
    [5] LI X, ZHAO T, RONG M. A multi-factor coupling event chain model based on Petri nets[C]//International Conference on Reliability, Maintainability and Safety. Piscataway, NJ: IEEE Press, 2009: 466-469.
    [6] 李晓磊, 田瑾, 赵廷弟.改进的区域安全性分析方法[J].航空学报, 2008, 29(3):622-626. doi: 10.3321/j.issn:1000-6893.2008.03.014

    LI X L, TIAN J, ZHAO T D.An improved method of regional safety analysis[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(3):622-626(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.014
    [7] QU J F, LI G, ZHANG S L.Study on system coupling effects of ecological and economic in mining subsidence reclamation area[J].Advanced Materials Research, 2013, 610-613:1315-1320. https://www.scientific.net/amr.610-613.1315.pdf
    [8] LUO P, HU Y.System risk evolution analysis and risk critical event identification based on event sequence diagram[J].Reliability Engineering & System Safety, 2013, 114(1):36-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0229643604
    [9] MIGUEL A, BEDIA M G, BARANDIARAN X E.Extended neural metastability in an embodied model of sensorimotor coupling[J].Frontiers in Systems Neuroscience, 2016, 10(117):76. doi: 10.3389/fnsys.2016.00076/full
    [10] PRITSKER A.Graphical evaluation and review technique[M].Berlin:Springer, 2001.
    [11] 李超, 王瑛, 陈超, 等.基于QHSME的装备危险耦合传导GERT分析[J].系统工程与电子技术, 2014, 36(11):2219-2225. doi: 10.3969/j.issn.1001-506X.2014.11.17

    LI C, WANG Y, CHEN C, et al.GERT analysis of coupled conduction for materiel hazard based on QHSME[J].Systems Engineering & Electronics, 2014, 36(11):2219-2225(in Chinese). doi: 10.3969/j.issn.1001-506X.2014.11.17
    [12] LIU B.Uncertainty distribution and independence of uncertain processes[J].Fuzzy Optimization & Decision Making, 2014, 13(3):259-271. https://www.researchgate.net/publication/264313725_Uncertainty_distribution_and_independence_of_uncertain_processes
    [13] LIU B, CHEN X.Uncertain multiobjective programming and uncertain goal programming[J].Journal of Uncertainty Analysis & Applications, 2015, 3(1):1-8. http://d.old.wanfangdata.com.cn/Periodical/ycxxb200502007
    [14] LIU Y, HA M.Expected value of function of uncertain variables[J].Journal of Uncertain Systems, 2010, 3(4):181-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003097748
    [15] LIU B, YAO K.Uncertain multilevel programming:Algorithm and applications[J].Computers & Industrial Engineering, 2015, 89:235-240. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234742418/
    [16] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E.Maximum entropy modeling of species geographic distributions[J].Ecological Modelling, 2006, 190(3-4):231-259. doi: 10.1016/j.ecolmodel.2005.03.026
    [17] YEO G, BURGE C B.Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals[J].Journal of Computational Biology:A Journal of Computational Molecular Cell Biology, 2004, 11(2-3):377-394. doi: 10.1089/1066527041410418
    [18] 陶良彦, 刘思峰, 方志耕, 等.GERT网络的矩阵式表达及求解模型[J].系统工程与电子技术, 2017, 39(6):1292-1297. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706017

    TAO L Y, LIU S F, FANG Z G, et al.Matrix expression and solution model of GERT network[J].Systems Engineering and Electronics, 2017, 39(6):1292-1297(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706017
    [19] 罗涛.信号与系统分析的流图矩阵法[J].通信学报, 1993, 14(6):73-79. http://d.old.wanfangdata.com.cn/Conference/316581

    LUO T.Analysis of signals and systems by flow graph matrix method[J].Journal of China Institute of Communications, 1993, 14(6):73-79(in Chinese). http://d.old.wanfangdata.com.cn/Conference/316581
    [20] 刘璐, 单梁, 戴跃伟, 等.非线性动态自适应旋转角的量子菌群算法[J].控制与决策, 2017, 32(12):2137-2144. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201712003

    LIU L, SHAN L, DAI Y W, et al.Quantum germ algorithm for nonlinear dynamic adaptive rotation angle[J].Control & Decision, 2017, 32(12):2137-2144(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzyjc201712003
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  101
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 录用日期:  2018-03-16
  • 网络出版日期:  2018-08-20

目录

    /

    返回文章
    返回
    常见问答