Simulation and evaluation method of aircraft response characteristics under wind disturbance
-
摘要:
针对飞行试验研究飞机风扰响应特性时存在的安全性与经济性问题,提出了一种在平静大气中模拟及量化评定飞机风扰响应特性的方法。通过设计舵面输入指令来激励飞机,使其产生能够模拟受到风扰的运动响应,进而完成飞机风扰响应特性的评定。以某型飞机为算例,基于PID控制方法设计了激励指令信号,模拟了飞机遭遇垂直突风与侧风后的响应特性,并基于时域峰值法评定了飞机的稳定特性。采用低阶等效拟配的方法对基于风扰响应数据评定所得的稳定特性结果进行了对比验证,结果表明,所建立的模拟风扰响应的控制指令设计与稳定特性评定方法是正确合理的。研究方法与结果对于飞机风扰响应特性的飞行试验评定等具有一定的参考价值。
Abstract:Aimed at economic and safety problems of investigating response characteristics of aircraft under wind disturbance by flight test, this paper presents a method of stimulating aircraft by designing input command of control surface in a calm atmosphere, to make it simulate motion response under wind disturbance and then complete the evaluation of aircraft characteristics under wind disturbance. Taking a certain aircraft as an example, stimulation command signals were designed based on PID control method. Response characteristics of aircraft that encountered vertical gust and cross wind were simulated, and the stability of aircraft was evaluated based on time-domain peak value. The stability characteristics, based on response data under wind disturbance, were compared and validated by adoption of low-order equivalent matching method. The results show that the design method of input command of control surface to simulate wind disturbance response and the evaluation method of stability characteristics are correct and reasonable. The research methods and results provide valuable reference for the evaluation of motion characteristics of aircraft by flight test.
-
表 1 直接影响飞行安全的典型飞行状态参数
Table 1. Typical flight status parameters that affect flight safety directly
飞行状态参数 幅值限制 α 失速迎角 β 最大方向舵偏配平侧滑角 V 最小飞行速度 ϕ 最大滚转角 表 2 算例飞机低阶等效拟配结果
Table 2. Low-order equivalent matching results of example aircraft
参数 数值 Kq -0.45 1/Tθ2 2.02 τθ 0.03 ζsp 0.59 ωnsp 2.83 Kϕ -0.62 τeϕ 0.15 TR 0.86 TS 8.5 Kβ 0.71 τeβ 0.11 ζd 0.41 ωd 2.25 表 3 算例飞机短周期模态特性
Table 3. Short-period mode characteristics of example aircraft
评定方法 激励信号 短周期阻尼比 短周期频率/(rad·s-1) 时域峰值法 升降舵与副翼组合信号 0.55 2.62 低阶等效法 方波 0.59 2.83 3211 0.59 2.83 扫频 0.59 2.84 表 4 算例飞机荷兰滚模态特性
Table 4. Dutch roll mode characteristics of example aircraft
评定方法 激励信号 荷兰滚阻尼比 荷兰滚频率/(rad·s-1) 时域峰值法 方向舵与副翼组合信号 0.48 2.12 低阶等效法 方波 0.41 2.25 3211 0.45 2.26 扫频 0.44 2.23 -
[1] FREDERIC M.Gust loads on aircraft: Concepts and applications[M]. Reston: AIAA, 1988. [2] EICHENBAUM F D, INGRAM C T.A comparison of C-141A flight test measured and theoretical vertical-gust responses[J]. Journal of Aircraft, 1971, 6(6): 532-536. doi: 10.2514/3.44101 [3] MCPHERSON R.YC-14 flight test results: AIAA-1977-1259[R].Reston: AIAA, 1977. [4] FREUND D, SIMMONS F, SPIVEY N, et al.Quiet SpikeTM prototype flight test results: AIAA-2007-1778[R].Reston: AIAA, 2007. [5] ZYLUK A, SIBILSKI K.The gust resistant MAV-Aerodynamic measurements, performance analysis, and flight tests: AIAA-2015-1684[R].Reston: AIAA, 2015. [6] KUBO D.Gust response evaluation of small UAS via free flight in gust wind tunnel: AIAA-2018-0297[R].Reston: AIAA, 2018. [7] IMAI S, BLASCH E, GALLI A, et al. Airplane flight safety using error-tolerant data stream processing[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(4): 4-17. doi: 10.1109/MAES.2017.150242 [8] 李中付, 华宏星, 宋汉文, 等. 用时域峰值法计算频率与阻尼[J]. 振动与冲击, 2001, 20(3): 5-8. doi: 10.3969/j.issn.1000-3835.2001.03.002LI Z F, HUA H X, SONG H W, et al. Identification of frequencies and damping ratios with time-domain peak values[J]. Journal of Vibration and Shock, 2001, 20(3): 5-8(in Chinese). doi: 10.3969/j.issn.1000-3835.2001.03.002 [9] STEVENS B L, LEWIS F L.Aircraft control and simulation[M].New York: John Wiley & Sons, Inc., 2004. [10] VO H, SESHAGIRI S.Robust control of F-16 lateral dynamics[J]. International Journal of Aerospace and Mechanical Engineering, 2008, 2(2): 80-85. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4757977 [11] ISO.Standard atmosphere: ISO 2533-1975[S].Switzerland: ISO, 1975. [12] PHILIPP B, REIK T, SEBASTIAN T.Frequency domain gust response simulation using computational fluid dynamics[J]. AIAA Journal, 2017, 55(7): 2174-2185. doi: 10.2514/1.J055373 [13] 朱红萍, 罗隆福. 基于ITAE指标的PID控制器参数优化设计[J]. 电气自动化, 2009, 31(6): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZD200906014.htmZHU H P, LUO L F.Optimization design of PID controller parameters based on ITAE index[J]. Intelligent Control Techniques, 2009, 31(6): 37-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQZD200906014.htm [14] YIN X M, WANG Y J, LIU L, et al.Particle swarm optimization for the hypersonic vehicle robust control system design: AIAA-2017-2229[R].Reston: AIAA, 2017. [15] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 92-93.FANG Z P, CHEN W C, ZHANG S G.Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005: 92-93(in Chinese). [16] U.S.Department of Defense.Flying quality of piloted air planes: MIL-STD-1797A[S].Washington, D.C.: U.S.Department of Defense, 1990.