Performance analysis and parameter optimization of lander with variable damping buffer
-
摘要:
为了分析带有变阻尼缓冲器的典型腿式着陆器软着陆性能,建立了着陆器的整机动力学仿真模型。结合仿真模型与蒙特卡罗法分析了着陆器在不确定着陆工况下的软着陆性能,验证了变阻尼缓冲器应用在着陆器中的可行性。基于动力学仿真模型和优化拉丁超立方实验设计抽取样本点,构造了描述变阻尼缓冲器缓冲特性参数、着陆工况参数与软着陆性能指标值之间映射关系的不完全三阶多项式响应面代理模型。为了得到性能最佳的变阻尼缓冲器,结合响应面模型、蒙特卡罗法与第二代非劣排序遗传算法(NSGA-Ⅱ)对变阻尼缓冲器的缓冲特性参数进行了优化。通过仿真模型验证,优化后的变阻尼缓冲器使着陆器的软着陆性能得到提升。
Abstract:In order to analyze soft landing performance of typical legged lander with variable damping buffer, the dynamic simulation model of lander was established. Based on the simulation model, the soft landing performance of the lander in the uncertain landing environment was analyzed by using Monte Carlo method. The sample points were obtained by using dynamic simulation model and optimized Latin hypercube experiment design, and the incomplete three-order polynomial response surface surrogate models which reflects the complex relationship among the configuration parameters of landing gear, the landing environment parameters and the values reflecting the soft landing performance were established. In order to obtain the variable damping buffer with best performance, the buffer characteristic parameters of the variable damping buffer were optimized by combining the response surface model, Monte Carlo method and non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ). The simulation model verification shows that the optimized soft landing performance of lander with variable damping buffer is enhanced.
-
表 1 变阻尼缓冲器参数
Table 1. Parameters of variable damping buffer
参数 取值 取值范围 k/(kN·m-1) 50 30~ 70 cmax/(kN·s·m-1) 50 30~ 70 r 0.5 0.3~0.7 注:r=cmin/cmax—阻尼系数比。 表 2 着陆工况参数取值
Table 2. Value of of landing condition parameters
参数 分布规律 分布参数 (μ0-6σ,μ0+6σ] α/(°) 正态分布 μ0=6,σ=0.667 (2,10] μ 正态分布 μ0=0.4,σ=0.016 7 (0.3,0.5] θp/(°) 均匀分布 [0, 45] 注:μ0—均值;σ—标准差。 表 3 软着陆性能分析结果
Table 3. Analysis results of soft landing performace
性能指标 均值 标准差 U/mm 436.281 1.207 S/mm 53.555 2.801 L/g 9.625 0.290 T/mm 1 703.846 37.111 注:超出许用值概率均为0。 表 4 响应面模型精度分析
Table 4. Accuracy analysis of response surface model
U 1.525 0.998 S 10.25 0.999 L 1.856 0.999 T 1.321 0.999 表 5 优化参数设置
Table 5. Value of optimal parameters
参数 种群数 进化代数 交叉指数 变异指数 交叉概率 数值 12 20 10 20 0.9 表 6 优化后软着陆性能分析结果
Table 6. Analysis results of soft landing performace after optimizaiton
性能指标 均值 标准差 U/mm 437.505 1.284 S/mm 49.588 2.564 L/g 9.485 0.234 T/mm 1 701.452 38.067 注:超出许用值概率均为0。 -
[1] 李萌.腿式着陆缓冲装置吸能特性及软着陆过程动力学仿真研究[D].哈尔滨: 哈尔滨工业大学, 2013: 1-10. http://cdmd.cnki.com.cn/Article/CDMD-10213-1013045385.htmLI M.Research on energy absorbers of legged-type lander and dynamic simulation on its soft landing process[D].Harbin: Harbin Institute of Technology, 2013: 1-10(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1013045385.htm [2] 杨建中, 曾福明, 满剑锋, 等.嫦娥三号着陆器着陆缓冲系统设计与验证[J].中国科学:技术科学, 2014, 44(5):440-449. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201405002.htmYANG J Z, ZENG F M, MAN J F, et al.Design and verification of the landing impact attenuation system for Chang'E-3 lander[J].Scientia Sinica Technologica, 2014, 44(5):440-449(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201405002.htm [3] 王家俊, 王春洁, 宋顺广.基于响应面法的月球着陆器软着陆性能优化[J].北京航空航天大学学报, 2014, 40(5):707-711. http://bhxb.buaa.edu.cn/CN/abstract/abstract12935.shtmlWANG J J, WANG C J, SONG S G.Performance optimization of lunar lander based on response surface methodology[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):707-711(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12935.shtml [4] 吴宏宇, 王春洁, 丁建中, 等.基于多工况的新型着陆器软着陆性能优化[J].北京航空航天大学学报, 2017, 43(4):776-781. http://bhxb.buaa.edu.cn/CN/abstract/abstract13933.shtmlWU H Y, WANG C J, DING J Z, et al.Soft landing performance optimization for novel lander based on multiple working conditions[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):776-781(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13933.shtml [5] LUCAS G H, ROBERT H D, VELORIA J M.Modeling and validation of a navy A6-Intruder actively controlled landing gear system:NASA/TP-1999-209124[M].Washington, D.C.:NASA, 1999. [6] MIKULOWSKI G M, HOLNICKISZULC J.Adaptive landing gear concept-feedback control validation[J].Smart Materials and Structures, 2007, 16(6):2146-2158. doi: 10.1088/0964-1726/16/6/017 [7] MIKULOWSKI G, JANKOWSKI L.Adaptive landing gear:Optimum control strategy and potential for improvement[J].Shock and Vibration, 2015, 16(2):175-194. http://www.ingentaconnect.com/content/rsoc/10709622/2009/00000016/00000002/art00004 [8] 牛伯瑶.月球探测器着陆系统磁流变缓冲器的结构设计与优化[D].重庆: 重庆大学, 2016: 23-55. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01014719NIU B Y.The structure design and optimization of magnetorheological buffer of lunar landing system[D].Chongqing: Chongqing University, 2016: 23-55(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01014719 [9] 汪岸柳.月球着陆器软着陆动力学与半主动控制研究[D].南京: 南京航空航天大学, 2011: 80-109. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2260950WANG A L.Investigation on the soft-landing dynamics and semi-active control for lunar lander[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 80-109(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2260950 [10] MAEDA T, OTSUKI M, HASHIMOTO T, et al.Attitude stabilization for lunar and planetary lander with variable damper[J].Journal of Guidance, Control, and Dynamics, 2016, 39(8):1790-1804. doi: 10.2514/1.G000325 [11] 吴宏宇, 王春洁, 丁宗茂, 等.两种着陆模式下的着陆器缓冲机构构型优化[J].宇航学报, 2017, 38(10):1032-1040. http://d.old.wanfangdata.com.cn/Periodical/yhxb201710003WU H Y, WANG C J, DING Z M, et al.Configuration optimization of landing gear under two kinds of landing modes[J].Journal of Astronautics, 2017, 38(10):1032-1040(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201710003 [12] ZUPP G A, DOIRON H H.A mathematical procedure for predicting the touchdown dynamics of a soft landing vehicle: NASA-TN-D-7045[R].Washington, D.C.: NASA, 1971. [13] NOHMI M, MIYAHARA A.Modeling for lunar lander by mechanical dynamics software: AIAA-2005-6416[R].Reston: AIAA, 2005. [14] MERCHANT D H, SAWDY D T.Monte Carlo dynamic analysis for lunar module landing loads[J].Journal of Spacecraft and Rockets, 1971, 8(1):48-55. doi: 10.2514/3.30216 [15] MURACA R J, CAMPBELL J W, KING C A.A Monte Carlo analysis of the Viking lander dynamics at touchdown: NASA-TN-D-7959[R].Washington, D.C.: NASA, 1975. [16] 宋顺广, 王春洁.基于蒙特卡罗法的月球探测器着陆稳定性分析[J].北京航空航天大学学报, 2013, 39(9):1348-1352. http://bhxb.buaa.edu.cn/CN/abstract/abstract12722.shtmlSONG S G, WANG C J.Landing stability analysis of the lunar lander based on Monte Carlo approach[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9):1348-1352(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12722.shtml [17] 李铁柱, 李光耀, 陈涛, 等.基于Kriging近似模型的汽车乘员约束系统稳健性设计[J].机械工程学报, 2010, 46(22):123-129. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201022020LI T Z, LI G Y, CHEN T, et al.Robustness design of occupant restraint system based on Kriging model[J].Journal of Mechanical Engineering, 2010, 46(22):123-129(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201022020 [18] KURTARAN H, ESKANDARIAN A, MARZOUGUI D.Crashworthiness design optimization using successive response surface approximations[J].Computational Mechanics, 2002, 29(4-5):409-421. doi: 10.1007/s00466-002-0351-x [19] LI M, DENG Z Q, GUO H W, et al.Optimizing crashworthiness design of square honeycomb structure[J].Journal of Central South University of Technology, 2014, 21(3):912-919. doi: 10.1007/s11771-014-2018-0 [20] TSUIK L.An overview of Taguchi method and newly developed statistical methods for robust design[J].ⅡE Transactions, 1992, 24(5):44-57. http://www.emeraldinsight.com/servlet/linkout?suffix=b19&dbid=16&doi=10.1108%2F02656719610114425&key=10.1080%2F07408179208964244