-
摘要:
针对飞轮早期故障难以检测、精确数学模型难以建立的问题,提出一种基于混沌吸引子特征的故障检测方法。该方法利用辅助曲面函数与系统参量构造离散动力系统,通过迭代产生近似混沌吸引子,正常数据与故障数据所产生的混沌吸引子形态不同,以此为特征进行故障检测。仿真结果表明,该方法构造的离散动力系统能够稳定地产生混沌吸引子;产生的混沌吸引子与初始迭代点无关;同种故障在不同工况下的特征相同;混沌吸引子特征对微小幅度的故障敏感。
Abstract:Aimed at the problem that the early fault of the flywheel is difficult to detect and the precision mathematical model is difficult to be established, a fault detection method based on the characteristics of chaotic attractor is proposed. This method uses the auxiliary curved surface function and the system parameters to construct the discrete dynamical system. The approximate chaotic attractors obtained from normal data through iteration are different with the ones obtained from fault data. The difference could be used as feature for fault detection. The simulation results show that the discrete dynamical system constructed by this method can generate the chaotic attractor stably. The chaotic attractor is independent of the initial iteration point. The same faults under different working conditions have the same characteristics. The chaotic attractor feature is sensitive to small fault.
-
Key words:
- flywheels /
- chaotic attractor /
- curved surface iteration /
- fault detection /
- radon transform
-
表 1 飞轮仿真模型参数设置
Table 1. Parameter setting of flywheel simulation model
参数 数值 驱动增益Gd/(A·V-1) 1 电机转动系数Kt/(N·m·A-1) 0.19 电机电动势反馈系数Ke/(V·rad-1·s-1) 0.29 转速限制增益系数Ks/(V·rad-1·s-1) 95 转速限制阈值ωs/ (r·min-1) 690 静摩擦力矩τc/(N·m) 0.002 飞轮转动惯量J/(N·m·s2) 0.078 电机磁极数量Np 36 滑动摩擦力矩τv/(N·m·s·rad-1) 0.037 输入电阻Rin/Ω 2 力矩噪声引起的角误差θα/rad 0.05 高通噪声滤波器频率ωα/(rad·s-1) 0.2 电压反馈增益kf 0.5 -
[1] 肇刚, 李泽, 李言俊.基于TSEOPM的在轨航天器故障预报方法研究[J].计算机测量与控制, 2009, 17(12):2352-2354. http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz200912003ZHAO G, LI Z, LI Y J.Research on method of fault prediction for onboard spacecrafts based on times series event omen pattern mining[J].Computer Meassurement & Control, 2009, 17(12):2352-2354(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjzdclykz200912003 [2] 苏林, 尚朝轩, 刘文静.航天器姿态控制系统故障诊断方法概述[J].长春理工大学学报(自然科学版), 2010, 33(4):23-27. doi: 10.3969/j.issn.1672-9870.2010.04.006SU L, SHANG C X, LIU W J.Survey on the technology of fault diagnosis for spacecraft attitude control system[J].Journal of Changchun University of Science and Technology(Natural Science Edition), 2010, 33(4):23-27(in Chinese). doi: 10.3969/j.issn.1672-9870.2010.04.006 [3] GAO C, DUAN G R.Robust adaptive fault estimation for a class of nonlinear systems subject to multiplicative faults[J].Circuits, Systems, and Signal Processing, 2012, 31(6):2035-2046. doi: 10.1007/s00034-012-9434-x [4] 管宇, 张迎春, 沈毅, 等.基于迭代学习观测器的卫星姿态控制系统的鲁棒容错控制[J].宇航学报, 2012, 33(8):1080-1086. doi: 10.3873/j.issn.1000-1328.2012.08.012GUAN Y, ZHANG Y C, SHEN Y, et al.Robust fault-tolerant control for satellite attitude control system based on iterative learning observer[J].Journal of Astronautics, 2012, 33(8):1080-1086(in Chinese). doi: 10.3873/j.issn.1000-1328.2012.08.012 [5] 李知周, 张锐, 朱振才, 等.基于扩展卡尔曼滤波的动量轮故障检测方法[J].航空学报, 2010, 31(8):1614-1621. http://d.old.wanfangdata.com.cn/Periodical/hkxb201008016LI Z Z, ZHANG R, ZHU Z C, et al.Extended Kalman filter-based fault detection for momentum wheel[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1614-1621(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201008016 [6] AZIZI S M, KHORASANI K.Adistributed Kalman filter for actuator fault estimation of deep space formation flying satellites[C]//Proceedings of 20093rd Annual IEEE Systems Conference.Piscataway, NJ: IEEE Press, 2009: 354-359. https://www.mendeley.com/research-papers/distributed-kalman-filter-actuator-fault-estimation-deep-space-formation-flying-satellites/ [7] TALEBI H A, KHORASANI K.A neural network-based multiplicative actuator fault detection and isolation of nonlinear systems[J].IEEE Transactions on Control Systems Technology, 2013, 21(3):842-851. doi: 10.1109/TCST.2012.2186634 [8] SHEN Q K, JIANG B, SHI P.Novel neural networks-based fault tolerant control scheme with fault alarm[J].IEEE Transactions on Cybernetics, 2014, 44(11):2190-2201. doi: 10.1109/TCYB.2014.2303131 [9] 高运广, 王仕成, 刘志国, 等.一种基于LS-SVM的联邦滤波故障检测方法[J].控制与决策, 2011, 26(9):1433-1440. http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201109031.htmGAO Y G, WANG S C, LIU Z G, et al.Fault detection method based on LS-SVM for federated Kalman filter[J].Control and Decision, 2011, 26(9):1433-1440(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201109031.htm [10] 陈冰, 鲁刚, 房红征, 等.基于最小二乘支持向量机的卫星异常检测方法[J].计算机测量与控制, 2014, 22(3):690-696. doi: 10.3969/j.issn.1671-4598.2014.03.014CHEN B, LU G, FANG H Z, et al.Method of satellite anomaly detection based on least squares support vector machine[J].Computer Measurement & Control, 2014, 22(3):690-696(in Chinese). doi: 10.3969/j.issn.1671-4598.2014.03.014 [11] 王日新, 龚学兵, 许敏强, 等.飞轮系统的符号动力学故障检测方法[J].哈尔滨工业大学学报, 2016, 48(10):31-38. doi: 10.11918/j.issn.0367-6234.2016.10.004WANG R X, GONG X B, XU M Q, et al.A symbolic dynamic analysis of flywheel system for fault detection[J].Journal of Harbin Institute of Technology, 2016, 48(10):31-38(in Chinese). doi: 10.11918/j.issn.0367-6234.2016.10.004 [12] 龚学兵, 王日新, 许敏强.飞轮传感器的高斯混合模型故障检测方法[J].宇航学报, 2015, 36(6):699-705. doi: 10.3873/j.issn.1000-1328.2015.06.011GONG X B, WANG R X, XU M Q.Gaussian mixed model-based fault detection method for flywheel sensor[J].Journal of Astronautics, 2015, 36(6):699-705(in Chinese). doi: 10.3873/j.issn.1000-1328.2015.06.011 [13] 龚学兵, 王日新, 许敏强.基于数据关联性分析的飞轮异常检测[J].航空学报, 2015, 36(3):898-906. http://d.old.wanfangdata.com.cn/Periodical/hkxb201503023GONG X B, WANG R X, XU M Q.Abnormality detection for flywheel based on data association analysis[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(3):898-906(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201503023 [14] ZHANG X D, LIU X D, ZHENG Y.Chaotic dynamic behavior analysis and control for a financial risk system[J].Chinese Physics B, 2013, 22(3):260-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013041700021331 [15] TAKENS F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathmatics, 1981, 898:361-381. doi: 10.1007-s12079-011-0121-7/ [16] 孙自强, 陈长征, 谷艳玲, 等.基于混沌和取样积分技术的大型风电增速箱早期故障诊断[J].振动与冲击, 2013, 32(9):113-117. doi: 10.3969/j.issn.1000-3835.2013.09.022SUN Z Q, CHEN C Z, GU Y L, et al.Incipient fault diagnosis of large scale wind turbine gearbox based on chaos theory and sampling integral technology[J].Journal of Vibration and Shock, 2013, 32(9):113-117(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.09.022 [17] 翁鹤, 皮德常.混沌RBF神经网络异常检测算法[J].计算机技术与发展, 2014, 24(7):29-33. http://d.old.wanfangdata.com.cn/Periodical/wjfz201407008WENG H, PI D C.Chaotic RBF neural network anomaly deection algorithm[J].Computer Technology and Development, 2014, 24(7):29-33(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wjfz201407008 [18] 高瑞乾, 甘新年, 闫源江.基于混沌特征的航空发动机故障诊断研究[J].国外电子测量技术, 2011, 30(3):24-28. doi: 10.3969/j.issn.1002-8978.2011.03.007GAO R Q, GAN X N, YAN Y J.Study on aero-engine fault diagnosis based on chaotic feature[J].Foreign Electronic Measurement Technology, 2011, 30(3):24-28(in Chinese). doi: 10.3969/j.issn.1002-8978.2011.03.007 [19] 侯胜利, 胡金海, 李应红.基于混沌变量的航空发动机性能监控与故障诊断[J].航空动力学报, 2005, 20(2):314-317. doi: 10.3969/j.issn.1000-8055.2005.02.028HOU S L, HU J H, LI Y H.Aeroengine performance monitoring and fault diagnosis based on chaos variable[J].Journal of Aerospace Power, 2005, 20(2):314-317(in Chinese). doi: 10.3969/j.issn.1000-8055.2005.02.028 [20] BIALKE B.High fidelity mathematical modeling of reaction wheel performance[J].Advances in the Astronautical Sciences, 1998, 98:483-496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026077273 [21] 于万波, 赵斌.曲面迭代混沌特性研究[J].物理学报, 2014, 63(12):120502. doi: 10.7498/aps.63.120502YU W B, ZHAO B.A new chaotic attractor graphics drawing method based on the curved iteration[J].Acta Physica Sinica, 2014, 63(12):120502(in Chinese). doi: 10.7498/aps.63.120502