-
摘要:
针对行车环境下列车晃动和环境噪声对钢轨磨耗测量的影响,提出了一种轨腰小圆弧自动提取方法,实现了钢轨轮廓的高精度配准。首先,提出了基于截断残差直方图的多项式拟合方法,寻找廓形最优拟合曲线,降低了噪声对轮廓拟合的影响;然后,针对拟合曲线的曲率分布特征,提出了基于动态窗口的最大曲率熵区间搜索算法实现轨腰小圆弧的自动分割;最后,基于两侧轨腰小圆弧拟合2个圆心作为匹配基准点,实现钢轨测量轮廓与标准设计轮廓的对齐配准。静态实验结果表明,该方法的系统测量误差均值和标准差都控制在0.01 mm之内,具有较小的测量误差和良好的重复性。现场动态测量也验证了该方法在行车环境下的重复性精度,多次测量结果的重复性良好,钢轨磨耗动态测量偏差控制在0.2 mm以内。
Abstract:Aimed at the influence of train vibration and environmental noise on the measurement of track wear, we proposed a method for automatic extraction of small circular arc of the rail waist, and achieved the high-precision registration of rail profile. First, a polynomial fitting method based on truncated residual histogram was proposed to find the optimal fitting curve of the profile and reduce the influence of noise on profile curve fitting; Then, aimed at the curvature distribution characteristics of the fitting curve, the interval search algorithm based on dynamic window's maximum curvature entropy was proposed to realize the automatic segmentation of small circular arc; Finally, two circle centers were fitted as matching reference points based on small circular arcs on both sides, and the alignment from the measured profile to the standard designed profile was realized. The static experimental results show that the mean value of system measurement error and standard deviation of the method are controlled within 0.01 mm with small measurement errors and high repeatability. The dynamic test also verified the repeatability accuracy of the method in the train-running environment, and the dynamic measurement deviation of rail wear is within 0.2 mm with high repeatability.
-
Key words:
- rail wear /
- profile registration /
- curvature entropy /
- structured light /
- train-running environment
-
表 1 空间轮廓点多项式拟合误差统计
Table 1. Error statistics of polynomial fitting of spatial profile points
拟合阶次 平方和误差 确定系数 均方根误差 1 20 862 0.393 4 12.34 2 6 516 0.807 8 6.922 3 1 389 0.959 6 3.207 4 51.93 0.998 5 0.623 5 53.07 0.998 5 0.632 6 67.14 0.998 0.713 7 79.42 0.997 7 0.779 8 92.69 0.997 3 0.844 9 104.8 0.997 0.901 -
[1] 严隽耄.车辆工程[M].北京:中国铁道出版社, 2009:240-265.YAN J M.Vehicle engineering[M].Beijing:China Railway Press, 2009:240-265(in Chinese). [2] ALIPPI C, CASAGRANDE E, SCOTTI F, et al.Composite realtime image processing for railways track profile measurement[J].IEEE Transactions on Instrumentation and Measurement, 2000, 49(3):559-564. doi: 10.1109/19.850395 [3] ATTIVISSIMO F, DANESE A, GIAQUINTO N, et al.A railway measurement system to evaluate the wheel-rail interaction quality[J].IEEE Transactions on Instrumentation and Measurement, 2007, 56(5):1583-1589. doi: 10.1109/TIM.2007.903583 [4] MAGNUS S, MAGNUS D.Rail measurement system: US2009/0073428 A1[P].2009-03-19. [5] LIU Z, SUN J, WANG H, et al.Simple and fast rail wear mea-surement method based on structured light[J].Optics and Lasers in Engineering, 2011, 49(11):1343-1351. doi: 10.1016/j.optlaseng.2011.05.014 [6] 占栋, 于龙, 肖建, 等.钢轨轮廓全断面高精度动态视觉测量方法研究[J].铁道学报, 2015, 37(9):96-106. http://d.old.wanfangdata.com.cn/Periodical/tdxb201509017ZHAN D, YU L, XIAO J, et al.Study on high-accuracy vision measurement approach for dynamic inspection of full cross-sectional rail profile[J].Journal of the China Railway Society, 2015, 37(9):96-106(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tdxb201509017 [7] MOLLEDA J, USAMENTIAGA R, MILLARA A F, et al.A profile measurement system for rail quality assessment during manufacturing[J].IEEE Transactions on Industry Applications, 2016, 52(3):2684-2692. doi: 10.1109/TIA.2016.2524459 [8] 占栋, 于龙, 肖建, 等.钢轨轮廓全断面检测中轨廓动态匹配方法研究[J].铁道学报, 2015, 37(5):71-77. http://d.old.wanfangdata.com.cn/Periodical/tdxb201505012ZHAN D, YU L, XIAO J, et al.Study on dynamic matching algorithm in inspection of full cross-section of rail profile[J].Journal of the China Railway Society, 2015, 37(5):71-77(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tdxb201505012 [9] 刘震, 张广军, 魏振忠, 等.一种高精度线结构光视觉传感器现场标定方法[J].光学学报, 2009, 29(11):3124-3128. http://d.old.wanfangdata.com.cn/Periodical/gxxb200911033LIU Z, ZHANG G J, WEI Z Z, et al.An accurate calibration method for line structured light vision sensor[J].Acta Optica Sinica, 2009, 29(11):3124-3128(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxxb200911033 [10] 占栋, 于龙, 邱存勇, 等.钢轨轮廓测量中的车体振动补偿问题研究[J].仪器仪表学报, 2013, 34(7):1625-1633. doi: 10.3969/j.issn.0254-3087.2013.07.027ZHAN D, YU L, QIU C Y, et al.Study on vehicle vibration compensation in railway track profile inspection[J].Chinese Journal of Scientific Instrument, 2013, 34(7):1625-1633(in Chinese). doi: 10.3969/j.issn.0254-3087.2013.07.027 [11] 胡坤, 周富强, 张广军.一种快速结构光条纹中心亚像素精度提取方法[J].仪器仪表学报, 2006, 27(10):1326-1329. doi: 10.3321/j.issn:0254-3087.2006.10.034HU K, ZHOU F Q, ZHANG G J.Fast extraction method for sub-pixel center of structured light stripe[J].Chinese Journal of Scientific Instrument, 2006, 27(10):1326-1329(in Chinese). doi: 10.3321/j.issn:0254-3087.2006.10.034 [12] 贾倩倩, 王伯雄, 罗秀芝.光切法形貌测量中光条中心的亚像素提取[J].光学精密工程, 2010, 18(2):390-396. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201002016JIA Q Q, WANG B X, LUO X Z.Extraction of central positions of light stripe in sub-pixel in 3D surface measurement based on light sectioning method[J].Optics and Precision Engineering, 2010, 18(2):390-396(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201002016 [13] 孙军华, 王伟华, 刘震, 等.基于结构光视觉的钢轨磨耗测量方法[J].北京航空航天大学学报, 2010, 36(9):1026-1029. http://bhxb.buaa.edu.cn/CN/abstract/abstract11740.shtmlSUN J H, WANG W H, LIU Z, et al.Rail wear measurement method based on structured-light vision[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9):1026-1029(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11740.shtml [14] BESL P J, MCKAY N D.A method for registration of 3-D shapes[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. doi: 10.1109/34.121791 [15] 王昊, 王胜春, 潘大海, 等.车载非接触式钢轨磨耗测量方法研究及应用[J].铁道建筑, 2017, 57(12):97-101. doi: 10.3969/j.issn.1003-1995.2017.12.26WANG H, WANG S C, PAN D H, et al.Research and application on train-borne non-contact rail wear measurement method[J].Railway Engineering, 2017, 57(12):97-101(in Chinese). doi: 10.3969/j.issn.1003-1995.2017.12.26