留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离对高超声速热化学非平衡气动热环境的影响

杨建龙 刘猛

杨建龙, 刘猛. 电离对高超声速热化学非平衡气动热环境的影响[J]. 北京航空航天大学学报, 2018, 44(11): 2364-2372. doi: 10.13700/j.bh.1001-5965.2018.0079
引用本文: 杨建龙, 刘猛. 电离对高超声速热化学非平衡气动热环境的影响[J]. 北京航空航天大学学报, 2018, 44(11): 2364-2372. doi: 10.13700/j.bh.1001-5965.2018.0079
YANG Jianlong, LIU Meng. Influence of ionization on hypersonic thermo-chemical non-equilibrium aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2364-2372. doi: 10.13700/j.bh.1001-5965.2018.0079(in Chinese)
Citation: YANG Jianlong, LIU Meng. Influence of ionization on hypersonic thermo-chemical non-equilibrium aerodynamic thermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2364-2372. doi: 10.13700/j.bh.1001-5965.2018.0079(in Chinese)

电离对高超声速热化学非平衡气动热环境的影响

doi: 10.13700/j.bh.1001-5965.2018.0079
详细信息
    作者简介:

    杨建龙  男, 博士研究生。主要研究方向:高超声速飞行器气动力/热数值计算、结构热防护设计、流-固-热耦合

    刘猛  男, 博士, 教授, 硕士生导师。主要研究方向:飞行器环境控制、结构热防护设计

    通讯作者:

    刘猛, E-mail:liumeng@buaa.edu.cn

  • 中图分类号: V221+.3;TB553

Influence of ionization on hypersonic thermo-chemical non-equilibrium aerodynamic thermal environments

More Information
  • 摘要:

    高超声速飞行,激波后高温气体会发生电离,飞行器气动热环境复杂。5组元(N2,O2,NO,O,N)、7组元(N2,O2,NO,O,N,NO+,e-)和11组元(N2,O2,NO,O,N,N2+,O2+,NO+,O+,N+,e-)热化学反应采用Gupta化学反应模型,分别数值研究电离作用对高超声速热化学非平衡气动热环境影响。本文分析了不同催化壁面条件下,高超声速热化学非平衡电离流场气动热环境特性。电离作用对激波离体距离和气动力载荷的影响很小。5组元热化学非平衡不考虑电离作用,流场温度和壁面热流密度偏大。11组元热化学平衡强电离流场温度最低;7组元热化学非平衡弱电离流场NO+和e-生成量过低;11组元热化学反应能对热化学非平衡电离流场气动力和热流密度载荷可靠预测。壁面催化作用会增大壁面热流密度,但它对高超声速热化学非平衡电离流场温度和气动力载荷的影响很小。

     

  • 图 1  11组元与5组元热化学非平衡流场平动-转动温度(Tt-r)

    Figure 1.  Translational-rotational temperatures (Tt-r) calculated by 11 and 5 species in thermo-chemical non-equilibrium flow fields

    图 2  11组元与5组元热化学反应不同温度沿驻点线分布

    Figure 2.  Distribution of different temperatures calculated by 11 and 5 species thermo-chemical reactions along stagnation point line

    图 3  不同中性组元沿驻点线质量分数

    Figure 3.  Mass fractions of different neutral species along stagnation point line

    图 4  11组元与5组元化学反应壁面压强与热流密度对比

    Figure 4.  Comparison of wall pressures and heat fluxes calculated by 11 and 5 species chemical reactions

    图 5  不同电离状态下流场平动-转动温度

    Figure 5.  Translational-rotational temperatures in different ionization flow fields

    图 6  不同电离状态下各种温度沿驻点线分布

    Figure 6.  Distribution of different temperatures calculated in different ionization conditions along stagnation point line

    图 7  7组元和11组元热化学非平衡流场NO+摩尔分数

    Figure 7.  NO+ mole fractions in 7 and 11 species thermo-chemical non-equilibrium flow fields

    图 8  7组元和11组元热化学非平衡流场e-摩尔分数

    Figure 8.  e- mole fractions in 7 and 11 species thermo-chemical non-equilibrium flow fields

    图 9  不同电离状态下壁面压强与热流密度对比

    Figure 9.  Comparison of wall pressures and heat fluxes calculated in different ionization conditions

    图 10  不同催化壁面热化学非平衡电离流场平动-转动温度

    Figure 10.  Translational-rotational temperatures in thermo-chemical non-equilibrium ionization flow fields in different wall catalytic conditions

    图 11  不同催化壁面压强与热流密度

    Figure 11.  Wall heat fluxes and pressures calculated in different wall catalytic conditions

    表  1  Gupta化学反应模型

    Table  1.   Gupta's chemical reaction model

    序号 化学反应式
    1 N2+ M1⇌2N+M1
    2 N2+N⇌2N+N
    3 O2+M2⇌2O+M2
    4 NO+M2⇌N+O+M2
    5 N2+O⇌NO+N
    6 NO+O⇌O2+N
    7 N+O⇌NO++e-
    8 O+e-⇌O++e-+e-
    9 N+e-⇌N++e-+e-
    10 O+O⇌O2++e-
    11 O+O2+⇌O2+O+
    12 N2+N+⇌N+N2+
    13 N+N⇌N2++e-
    14 O2+N2⇌NO+NO++e-
    15 NO+M3⇌NO++e-+M3
    16 O+NO+⇌NO+O+
    17 N2+O+⇌O+N2+
    18 N+NO+⇌NO+N+
    19 O2+NO+⇌NO+O2
    20 O+NO+⇌O2+N+
    注:M1= N2, O2, O, NO; M2= N2, O2,N, O, NO; M3= N2, O2
    下载: 导出CSV
  • [1] PARK G, GAI S L, NEELY A J.Base flow of circular cylinder at hypersonic speeds[J].AIAA Journal, 2016, 54(2):458-468. doi: 10.2514/1.J054270
    [2] SHAO C, NIE L, CHEN W F.Analysis of weakly ionized ablation plasma flows for a hypersonic vehicle[J].Aerospace Science and Technology, 2016, 51:151-161. doi: 10.1016/j.ast.2016.02.005
    [3] BURT J M, JOSYULA E.Vibrational nonequilibrium quantification for state-resolved simulation of a hypersonic flow[J].Journal of Thermophysics and Heat Transfer, 2017, 31(3):660-673. doi: 10.2514/1.T5044
    [4] ZENG M, XU D, LIU J, et al.Novel method to calculate vibrational thermal conduction in hypersonic nonequilibrium flow[J].Journal of Thermophysics and Heat Transfer, 2016, 30(1):12-24. doi: 10.2514/1.T4611
    [5] IBRAHIM A, SUMAN S, GIRIMAJI S S.On air-chemistry reduction for hypersonic external flow applications[[J].International Journal of Heat and Fluid Flow, 2015, 51:298-308. doi: 10.1016/j.ijheatfluidflow.2014.10.021
    [6] KIM M, KEIDAR M, BOYD I D.Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma[J].Journal of Spacecraft and Rockets, 2008, 45(6):1223-1229. doi: 10.2514/1.37395
    [7] KIM M, BOYD I D, KEIDAR M.Modeling of electromagnetic manipulation of plasmas for communication during reentry flight[J].Journal of Spacecraft and Rockets, 2010, 47(1):29-35. doi: 10.2514/1.45525
    [8] FARBAR E, BOYD I D, MARTIN A.Numerical prediction of hypersonic flowfields including effects of electron translational nonequilibrium[J].Journal of Thermophysics and Heat Transfer, 2013, 27(4):593-606. doi: 10.2514/1.T3963
    [9] SHANG J S, ANDRIENKO D A, HUANG P G, et al.A computational approach for hypersonic nonequilibrium radiation utilizing space partition algorithm and Gauss quadrature[J].Journal of Computational Physics, 2014, 266:1-21. doi: 10.1016/j.jcp.2014.02.007
    [10] 屈程, 王江峰.电离对高超声速稀薄流飞行器气动热影响[J].航空动力学报, 2016, 31(9):2156-2163. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609014

    QU C, WANG J F.Ionization effects on aerodynamic heat for vehicle in hypersonic rarefied flow[J].Journal of Aerospace Power, 2016, 31(9):2156-2163(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609014
    [11] HAO J A, WANG J Y, LEE C H.Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J].Acta Astronautica, 2016, 126:1-10. doi: 10.1016/j.actaastro.2016.04.014
    [12] GUPTA R N, YOS J M, THOMPSON R A, et al.A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K: NASA RP-1232[R].Washington, D.C.: NASA, 1990.
    [13] PARK C.On convergence of computation of chemical reacting flows: AIAA-1985-0247[R].Reston: AIAA, 1985.
    [14] LORZEL H, MIKELLIDES P G.Validation of a nonequilibrium air chemistry model in MACH2 and applications to weakly-ionized hypersonic flow: AIAA-2009-0279[R].Reston: AIAA, 2009.
    [15] PARK C.Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles: AIAA-1984-1730[R].Reston: AIAA, 1984.
    [16] MASSIMI H S, SHEN H, WEN C Y, et al.Numerical analysis of hypersonic flows around blunt-nosed models and a space vehicle[J].Aerospace Science and Technology, 2015, 43:360-371. doi: 10.1016/j.ast.2015.03.017
    [17] ALLOUCHE R, HAOUI R.Ionising air in thermal and chemical nonequilibrium flow behind a plane shock wave: AIAA-2006-8154[R].Reston: AIAA, 2006.
    [18] KIM M, GVLHAN A, BOYD I D.Modeling of electron energy phenomena in hypersonic flows[J].Journal of Thermophysics and Heat Transfer, 2012, 26(2):244-257. doi: 10.2514/1.T3716
    [19] GAO Z X, JIANG C W, LEE C H.Aeroheating study of hypersonic chemical nonequilibrium flows around a reentry blunt body: AIAA-2014-4415[R].Reston: AIAA, 2014.
    [20] CHI D, CHAKRAVARTHY S, GOLDBERG U.Flow prediction around the SACCON configuration using CFD++: AIAA-2010-4563[R].Reston: AIAA, 2010.
    [21] GVR H B, EYI S.Diffusion effect on hypersonic flow using Fick's law: AIAA-2015-3797[R].Reston: AIAA, 2015.
    [22] CHEN X H, CHEN F, ZHANG S T, et al.The effects of chemical nonequilibrium and surface catalytic on aerodynamic characteristics of hypersonic vehicles: AIAA-2016-1252[R].Reston: AIAA, 2016.
    [23] MACLEAN M, MARINEAU E, PARKER R, et al.Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J].Journal of Spacecraft and Rockets, 2013, 50(2):470-474. doi: 10.2514/1.A32327
    [24] MACLEAN M, MUNDY E, WADHAMS T, et al.Analysis and ground test of aerothermal effects on spherical capsule geometries: AIAA-2008-4273[R].Reston: AIAA, 2008.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  76
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 录用日期:  2018-05-04
  • 网络出版日期:  2018-11-20

目录

    /

    返回文章
    返回
    常见问答