Influence of ionization on hypersonic thermo-chemical non-equilibrium aerodynamic thermal environments
-
摘要:
高超声速飞行,激波后高温气体会发生电离,飞行器气动热环境复杂。5组元(N2,O2,NO,O,N)、7组元(N2,O2,NO,O,N,NO+,e-)和11组元(N2,O2,NO,O,N,N2+,O2+,NO+,O+,N+,e-)热化学反应采用Gupta化学反应模型,分别数值研究电离作用对高超声速热化学非平衡气动热环境影响。本文分析了不同催化壁面条件下,高超声速热化学非平衡电离流场气动热环境特性。电离作用对激波离体距离和气动力载荷的影响很小。5组元热化学非平衡不考虑电离作用,流场温度和壁面热流密度偏大。11组元热化学平衡强电离流场温度最低;7组元热化学非平衡弱电离流场NO+和e-生成量过低;11组元热化学反应能对热化学非平衡电离流场气动力和热流密度载荷可靠预测。壁面催化作用会增大壁面热流密度,但它对高超声速热化学非平衡电离流场温度和气动力载荷的影响很小。
Abstract:The high temperature gas after shock wave occurs to ionize in hypersonic flight, which makes the aerodynamic thermal environments to be complicated. The 5 species (N2, O2, NO, O, N), 7 species (N2, O2, NO, O, N, NO+, e-) and 11 species (N2, O2, NO, O, N, N2+, O2+, NO+, O+, N+, e-) thermo-chemical reactions of Gupta's chemical reaction model were taken to numerically study the influence of ionization on hypersonic thermo-chemical non-equilibrium aerodynamic thermal environments, respectively. The characteristics of hypersonic thermo-chemical non-equilibrium ionization flow field aerodynamic thermal environments in different catalytic wall conditions were also researched. The effect of ionization on the shock standoff distance and the aerodynamic force load is very small. The flow filed temperature and the wall heat flux calculated by 5 species thermo-chemical non-equilibrium reactions are much bigger because the effect of ionization is not considered. The hypersonic strong ionization flow field temperature calculated by 11 species thermo-chemical equilibrium reactions is the lowest. The amounts of NO+ and e- in hypersonic weak ionization flow field calculated by 7 species thermo-chemical non-equilibrium reactions are too small. The aerodynamic force and the wall heat flux loads in hypersonic thermo-chemical non-equilibrium ionization flow field can be effectively predicted by 11 species thermo-chemical reactions. The wall heat flux increases when the effect of wall catalysis is considered. However, the temperature of hypersonic thermo-chemical non-equilibrium ionization flow field and the aerodynamic force load are less affected by the wall catalysis.
-
Key words:
- hypersonic /
- ionize /
- thermo-chemical non-equilibrium /
- aerodynamic thermal environment /
- catalytic wall
-
表 1 Gupta化学反应模型
Table 1. Gupta's chemical reaction model
序号 化学反应式 1 N2+ M1⇌2N+M1 2 N2+N⇌2N+N 3 O2+M2⇌2O+M2 4 NO+M2⇌N+O+M2 5 N2+O⇌NO+N 6 NO+O⇌O2+N 7 N+O⇌NO++e- 8 O+e-⇌O++e-+e- 9 N+e-⇌N++e-+e- 10 O+O⇌O2++e- 11 O+O2+⇌O2+O+ 12 N2+N+⇌N+N2+ 13 N+N⇌N2++e- 14 O2+N2⇌NO+NO++e- 15 NO+M3⇌NO++e-+M3 16 O+NO+⇌NO+O+ 17 N2+O+⇌O+N2+ 18 N+NO+⇌NO+N+ 19 O2+NO+⇌NO+O2 20 O+NO+⇌O2+N+ 注:M1= N2, O2, O, NO; M2= N2, O2,N, O, NO; M3= N2, O2。 -
[1] PARK G, GAI S L, NEELY A J.Base flow of circular cylinder at hypersonic speeds[J].AIAA Journal, 2016, 54(2):458-468. doi: 10.2514/1.J054270 [2] SHAO C, NIE L, CHEN W F.Analysis of weakly ionized ablation plasma flows for a hypersonic vehicle[J].Aerospace Science and Technology, 2016, 51:151-161. doi: 10.1016/j.ast.2016.02.005 [3] BURT J M, JOSYULA E.Vibrational nonequilibrium quantification for state-resolved simulation of a hypersonic flow[J].Journal of Thermophysics and Heat Transfer, 2017, 31(3):660-673. doi: 10.2514/1.T5044 [4] ZENG M, XU D, LIU J, et al.Novel method to calculate vibrational thermal conduction in hypersonic nonequilibrium flow[J].Journal of Thermophysics and Heat Transfer, 2016, 30(1):12-24. doi: 10.2514/1.T4611 [5] IBRAHIM A, SUMAN S, GIRIMAJI S S.On air-chemistry reduction for hypersonic external flow applications[[J].International Journal of Heat and Fluid Flow, 2015, 51:298-308. doi: 10.1016/j.ijheatfluidflow.2014.10.021 [6] KIM M, KEIDAR M, BOYD I D.Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma[J].Journal of Spacecraft and Rockets, 2008, 45(6):1223-1229. doi: 10.2514/1.37395 [7] KIM M, BOYD I D, KEIDAR M.Modeling of electromagnetic manipulation of plasmas for communication during reentry flight[J].Journal of Spacecraft and Rockets, 2010, 47(1):29-35. doi: 10.2514/1.45525 [8] FARBAR E, BOYD I D, MARTIN A.Numerical prediction of hypersonic flowfields including effects of electron translational nonequilibrium[J].Journal of Thermophysics and Heat Transfer, 2013, 27(4):593-606. doi: 10.2514/1.T3963 [9] SHANG J S, ANDRIENKO D A, HUANG P G, et al.A computational approach for hypersonic nonequilibrium radiation utilizing space partition algorithm and Gauss quadrature[J].Journal of Computational Physics, 2014, 266:1-21. doi: 10.1016/j.jcp.2014.02.007 [10] 屈程, 王江峰.电离对高超声速稀薄流飞行器气动热影响[J].航空动力学报, 2016, 31(9):2156-2163. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609014QU C, WANG J F.Ionization effects on aerodynamic heat for vehicle in hypersonic rarefied flow[J].Journal of Aerospace Power, 2016, 31(9):2156-2163(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609014 [11] HAO J A, WANG J Y, LEE C H.Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J].Acta Astronautica, 2016, 126:1-10. doi: 10.1016/j.actaastro.2016.04.014 [12] GUPTA R N, YOS J M, THOMPSON R A, et al.A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K: NASA RP-1232[R].Washington, D.C.: NASA, 1990. [13] PARK C.On convergence of computation of chemical reacting flows: AIAA-1985-0247[R].Reston: AIAA, 1985. [14] LORZEL H, MIKELLIDES P G.Validation of a nonequilibrium air chemistry model in MACH2 and applications to weakly-ionized hypersonic flow: AIAA-2009-0279[R].Reston: AIAA, 2009. [15] PARK C.Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles: AIAA-1984-1730[R].Reston: AIAA, 1984. [16] MASSIMI H S, SHEN H, WEN C Y, et al.Numerical analysis of hypersonic flows around blunt-nosed models and a space vehicle[J].Aerospace Science and Technology, 2015, 43:360-371. doi: 10.1016/j.ast.2015.03.017 [17] ALLOUCHE R, HAOUI R.Ionising air in thermal and chemical nonequilibrium flow behind a plane shock wave: AIAA-2006-8154[R].Reston: AIAA, 2006. [18] KIM M, GVLHAN A, BOYD I D.Modeling of electron energy phenomena in hypersonic flows[J].Journal of Thermophysics and Heat Transfer, 2012, 26(2):244-257. doi: 10.2514/1.T3716 [19] GAO Z X, JIANG C W, LEE C H.Aeroheating study of hypersonic chemical nonequilibrium flows around a reentry blunt body: AIAA-2014-4415[R].Reston: AIAA, 2014. [20] CHI D, CHAKRAVARTHY S, GOLDBERG U.Flow prediction around the SACCON configuration using CFD++: AIAA-2010-4563[R].Reston: AIAA, 2010. [21] GVR H B, EYI S.Diffusion effect on hypersonic flow using Fick's law: AIAA-2015-3797[R].Reston: AIAA, 2015. [22] CHEN X H, CHEN F, ZHANG S T, et al.The effects of chemical nonequilibrium and surface catalytic on aerodynamic characteristics of hypersonic vehicles: AIAA-2016-1252[R].Reston: AIAA, 2016. [23] MACLEAN M, MARINEAU E, PARKER R, et al.Effect of surface catalysis on measured heat transfer in expansion tunnel facility[J].Journal of Spacecraft and Rockets, 2013, 50(2):470-474. doi: 10.2514/1.A32327 [24] MACLEAN M, MUNDY E, WADHAMS T, et al.Analysis and ground test of aerothermal effects on spherical capsule geometries: AIAA-2008-4273[R].Reston: AIAA, 2008.