Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity
-
摘要:
硬度是材料力学性能的重要指标之一,目前采用超声无损检测方法评价材料的硬度指标存在诸多挑战。通过搭建高精度声时测量系统,采用超声纵波脉冲反射回波法测量不同热处理45钢试件沿厚度方向的超声波传播声时,计算超声纵波声速。同时改变门信号的测量方式,研究不同热处理及门信号测量方式对超声纵波声速评价材料硬度的影响。建立材料硬度、微观组织以及超声纵波声速之间的映射关系,得到超声纵波声速评价45钢试件硬度指标的标定模型,并对标定模型进行验证。标定模型预测硬度误差满足工程应用误差10%的要求。
Abstract:Hardness is one of the important indexes of mechanical performance of materials, and employing ultrasonic nondestructive testing method for hardness evaluation faces many challenges now. In this paper, through setting up high-precision ultrasonic wave transmission time measurement system, the longitudinal wave propagation time in the thickness direction of different heat treated 45 steel specimens was measured by pulse reflected echo method, and the longitudinal wave velocity was calculated. Simultaneously, the gate signal measurement methods were changed, and the effects of different heat treatment and gate signal measurement methods on hardness evaluation by the longitudinal wave velocity were studied.On this basis, the mapping relationship among material hardness, microstructure and longitudinal wave velocity was obtained, and the calibration model for evaluating the hardness of 45 steel specimens by longitudinal wave velocity was established and verified. The hardness prediction error by the calibration model meets the error requirement of 10% for engineering application.
-
Key words:
- longitudinal wave velocity /
- hardness /
- microstructure /
- measurement signal /
- mapping relationship
-
表 1 标定45钢试件热处理方法及硬度
Table 1. Heat treatment methods and hardness of calibrated 45 steel specimens
热处理方法 冷却方式 回火温度/℃ 保温时间/min 硬度/HBW A 炉冷 129 N 空冷 155 600T 空冷 600 30 192 400T 空冷 400 30 340 200T 空冷 200 30 489 WQ 水冷 522 表 2 标定试件超声纵波声速(测量方法1)
Table 2. Calibrated specimen ultrasonic longitudinal wave velocity (Measuring method 1)
热处理方法 d/mm 一次回波 二次回波 vL/(m·s-1) t1/μs Et1/μs t2/μs Et2/μs A 18.98 9.397 9 0.001 15.827 6 0.001 5 904 N 18.99 9.391 7 0.001 15.830 1 0.008 5 899 600T 18.98 9.373 4 0.002 15.827 0 0.003 5 882 400T 18.99 9.351 3 0.004 15.814 1 0.005 5 876 200T 18.98 9.335 4 0.003 15.828 5 0.005 5 846 WQ 18.98 9.315 4 0.008 15.843 0 0.009 5 815 表 3 标定试件超声纵波声速(测量方法2)
Table 3. Calibrated specimen ultrasonic longitudinal wave velocity (Measuring method 2)
热处理方法 d/mm t/μs Et/μs vL/(m·s-1) A 18.98 3.213 2 0.006 5 907 N 18.99 3.217 8 0.009 5 901 600T 18.98 3.224 3 0.003 5 886 400T 18.99 3.233 0 0.005 5 873 200T 18.98 3.243 8 0.005 5 851 WQ 18.98 3.273 4 0.009 5 798 表 4 不同热处理45钢试件晶格畸变程度
Table 4. Degree of lattice distortion of different heat treated 45 steel specimens
热处理方法 晶格畸变程度/% A 0 N 0.033 600T 0.094 400T 0.168 200T 0.369 WQ 0.509 -
[1] 蔡鹏, 程玉华, 谢驰, 等.超声波技术用于零件表面硬度无损检测的研究[J].工具技术, 2007, 41(2):85-89. doi: 10.3969/j.issn.1000-7008.2007.02.024CAI P, CHENG Y H, XIE C, et al.Research on non-destructive detection of part surface hardness with ultrasonic technology[J].Tool Engineering, 2007, 41(2):85-89(in Chinese). doi: 10.3969/j.issn.1000-7008.2007.02.024 [2] 刘志军.金属基复合材料高温界面特性及耐磨性能研究[J].热加工工艺, 2016, 45(12):110-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016080300056444LIU Z J.High temperature interface properties and wear resistance of metal matrix composite[J].Hot Working Technology, 2016, 45(12):110-112(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016080300056444 [3] BAO Y W, WANG W, ZHOU Y C.Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements[J].Acta Materialia, 2004, 52(18):5397-5404. doi: 10.1016/j.actamat.2004.08.002 [4] ZHU L N, XU B S, WANG H D, et al.Determination of hardness of plasma-sprayed FeCrBSi coating on steel substrate by nanoindentation[J].Materials Science & Engineering A, 2010, 528(1):425-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d113adb3a97ca5a6550898923fcc7ea [5] 萨殊利, 肖春燕, 朱衡君, 等.电涡流无损检测淬火钢轨踏面硬度定量分析[J].铁道学报, 2001, 23(3):33-36. doi: 10.3321/j.issn:1001-8360.2001.03.007SA S L, XIAO C Y, ZHU H J, et al.Quantitative analysis of quenched rail surface hardness by eddy current nondestructive testing[J].Journal of the China Railway Society, 2001, 23(3):33-36(in Chinese). doi: 10.3321/j.issn:1001-8360.2001.03.007 [6] 付强, 李世波.金属材料几种常见硬度的区别与联系[J].山东化工, 2016, 45(6):70-72. doi: 10.3969/j.issn.1008-021X.2016.06.026FU Q, LI S B.Difference and contact of metal materials several common hardness[J].Shandong Chemical Industry, 2016, 45(6):70-72(in Chinese). doi: 10.3969/j.issn.1008-021X.2016.06.026 [7] ZENG W, WANG H, TIAN G, et al.Detection of surface defects for longitudinal acoustic waves by a laser ultrasonic imaging technique[J].Optik-International Journal for Light and Electron Optics, 2016, 127(1):415-419. doi: 10.1016/j.ijleo.2015.09.175 [8] 门平, 董世运, 康学良, 等.材料早期损伤的非线性超声诊断[J].仪器仪表学报, 2017, 38(5):1101-1118. doi: 10.3969/j.issn.0254-3087.2017.05.008MEN P, DONG S Y, KANG X L, et al.Material early damage diagnosis with nonlinear ultrasound[J].Chinese Journal of Scientific Instrument, 2017, 38(5):1101-1118(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.05.008 [9] JIAO J, FAN Z, ZHONG F, et al.Application of ultrasonic methods for early detection of intergranular corrosion in austenitic stainless steel[J].Research in Nondestructive Evaluation, 2016, 27(4):193-203. doi: 10.1080/09349847.2015.1103922 [10] CHEREPETSKAYA E B, KARABUTOV A A, MIRONOVA E A, et al.Contact laser-ultrasonic evaluation of residual stress[J].Applied Mechanics & Materials, 2016, 843(7):118-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.843.118 [11] LIU B, DONG S.Stress evaluation of laser cladding coating with critically refracted longitudinal wave based on cross correlation function[J].Applied Acoustics, 2016, 101(8):98-103. http://www.sciencedirect.com/science/article/pii/S0003682X15002388 [12] FREITAS V L D A, ALBUQUERQUE V H C D, SILVA E D M, et al.Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements[J].Materials Science & Engineering A, 2010, 527(16):4431-4437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceeb5f5ae6b397088ceec38d90ab472e [13] YU Z, LIU C, ZHANG F, et al.Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants[J].Ultrasonics, 2016, 69(3):243-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a066aae617b63be1736dbd234f60ce0c [14] 邓雯, 杨建华, 张扬.基于孤立波的杨氏模量无损检测换能器研究[J].仪器仪表学报, 2017, 38(11):2762-2768. doi: 10.3969/j.issn.0254-3087.2017.11.018DENG W, YANG J H, ZHANG Y.HNSWs based transducers in measuring Young's modulus nondestructively[J].Chinese Journal of Scientific Instrument, 2017, 38(11):2762-2768(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.11.018 [15] 周玉.材料分析方法[M].北京:机械工业出版社, 2011:40-54.ZHOU Y.Material analysis method[M].Beijing:Machinery Industry Press, 2011:40-54(in Chinese). [16] ROSE J L.固体中的超声波[M].何存富, 吴斌, 王秀彦, 译.北京: 科学出版社, 2004: 242-247.ROSE J L.Ultrasonic waves in solid media[M].HE C F, WU B, WANG X Y, translated.Beijing: Science Press, 2004: 242-247(in Chinese).