Exo-atmospheric interceptor modeling and penetration and defense effectiveness analysis
-
摘要:
基于跨大气层反导拦截的各阶段流程,首先完成了某型拦截弹的动力学建模,然后利用预测拦截点(PIP)导引以及射表插值的思想,设计了针对大气层外中远程弹道类目标的中段拦截制导方法。在此基础上,研究了不同情形下拦截弹针对弹道导弹的部署区域,发射区段与拦截区段,以及固定拦截阵地的保护范围,验证了大气层外拦截导引方法的有效性。考虑到弹道导弹可能采取的突防措施,包括机动变轨、电子干扰以及红外诱饵掩护等手段,通过设计大样本仿真试验,分析进攻弹所采取的不同措施带来的突防效能。对于能够拦截常规弹道的拦截弹部署点,进攻弹可以通过机动变轨和释放诱饵等策略分阶段起到干扰作用,将突防概率提高到70%以上。
-
关键词:
- 大气层外 /
- 动能拦截 /
- 预测拦截点(PIP) /
- 数值射表 /
- 攻防效能
Abstract:Based on the procedure of trans-atmospheric missile defense interception in each phase, this paper has firstly established a dynamic model for exo-atmospheric interceptor. Then according to the theory of predicted intercepting point (PIP) guidance and firing table interpolation, a method of exo-atmospheric midcourse guidance has been presented to intercept intermediate-range and long-range ballistic target. On this basis, this paper has studied the interceptor deployment zones and the firing/intercept sections according to multiple target trajectories, and the protective zone of one fixed interceptor launch position. With this approach, the effectiveness of the exo-atmospheric interception guidance method has been tested. Finally, considering the penetration measures that ballistic missile may have taken, including maneuver orbital transfer, electronic jamming, infrared bait, etc., the penetration effectiveness that achieved from different measures employed by offensive missile has been analyzed through large sample simulations. For those interceptor deployment positions where the general ballistic target can be hit, the penetration probability of the warhead can be raised up to over 70% with the interference strategies such as maneuver orbital transfer and bait release applied in different phases.
-
表 1 火箭助推器的基本参数
Table 1. Basic parameters of rocket booster
级数 总质量/kg 燃料质量/kg 推力/kN 工作时间/s 1 725.7 577.8 62.55×4 6 2 1 134.0 398.6
508.6139.246
40.6118
353 453.5 150.0
150.042.0
42.010
10表 2 EKV的基本参数
Table 2. Basic parameters of EKV
参数 数值 红外导引头视距/km 700 长度/m 0.68 直径/m 0.19 总质量/kg 60.0 燃料质量/kg 20.0 秒流量/(kg·s-1) 1.0 推力/kN 2.6 表 3 进攻弹的仿真想定
Table 3. Scenario of ballistic missile
关机点 目标Ⅰ 目标Ⅱ 飞行时间/s 诱饵数 (0°, 0°) (E45°, 0°) (E42°, N2°) 685.46 8 表 4 拦截仿真结果
Table 4. Intercept simulation results
发射阵地 飞行时间/s 燃料消耗/% 脱靶量/m (E30°, 0°) 313.22 72.41 3326.2 (E40°, 0°) 408.87 62.62 0.0393 表 5 诱饵数与EKV锁定弹头的概率
Table 5. Bait number and probability of EKV locking on warhead
n 3 4 5 6 7 8 Pd(n) 0.3620 0.2565 0.2141 0.1836 0.1607 0.1429 -
[1] ZARCHAN P.Tactical and strategic missile guidance[M].6th ed.Reston: AIAA, 2012: 213-324, 715-862. [2] ZES D.Exo-atmospheric intercept using modified proportional guidance with gravity correction for coast phase: AIAA-94-0209[R].Reston: AIAA, 1994. [3] ZES D.Exo-atmospheric intercept with J2 correction: AIAA-98-4305[R].Reston: AIAA, 1998. https://www.sciencedirect.com/science/article/pii/S0016003211001669 [4] PHILLIPS C A, MALYEVAC D S.Pulse motor optimization via mission charts for an exoatmospheric interceptor[J].Journal of Guidance, Control, and Dynamics, 1998, 21(4):611-617. doi: 10.2514/2.4279 [5] PHILLIPS C A, MALYEVAC D S.Exoatmospheric interceptor pulse motor optimization with discrete bias removal[J].Journal of Guidance, Control, and Dynamics, 2000, 23(2):376-378. doi: 10.2514/2.4537 [6] GUTMAN S, RUBINSKY S.Exo-atmospheric mid-course guidance[C]//AIAA Guidance, Navigation, and Control Conference.Reston: AIAA, 2015: 1-17. [7] HABLANI H B.Pulsed guidance of exoatmospheric interceptor with image processing delays in angle measurements: AIAA-2000-4272[R] Reston: AIAA, 2000. https://www.researchgate.net/publication/269208887_Pulsed_guidance_of_exoatmospheric_interceptors_with_image_processing_delays_in_angle_measurements [8] HABLANI H B, PEARSON D W.Miss distance error analysis of exoatmospheric interceptors[J].Journal of Guidance, Control, and Dynamics, 2004, 27(2):283-289. doi: 10.2514/1.9168 [9] GUO J G, ZHANG T B, ZHOU J, et al.The three dimensional guidance system design of terminal attack phase for exo-atmospheric kill vehicle[J].International Journal for Light and Electron Optics, 2017, 130:1158-1167. doi: 10.1016/j.ijleo.2016.11.135 [10] SHIMA T, GOLAN O M.Exo-atmospheric guidance of anaccelerating interceptor missile[J].Journal of the Franklin Institute, 2012, 349(2):622-637. doi: 10.1016/j.jfranklin.2011.06.024 [11] ENDER T, LEURCK R F, WEAVER B.Systems-of-systems analysis of ballistic missile defense architecture effectiveness through surrogate modeling and simulation[J].IEEE Systems Journal, 2010, 4(2):156-166. doi: 10.1109/JSYST.2010.2045541 [12] 吴钰飞, 罗小明, 申之明, 等.诱饵影响下多枚弹道导弹突防效能研究[J].装备学院学报, 2008, 19(3):57-62. doi: 10.3783/j.issn.1673-0127.2008.03.013WU Y F, LUO X M, SHEN Z M, et al.Study on the penetration effectiveness of multiple ballistic missiles considering the effect of decoys[J].Journal of the Academy of Equipment Command & Technology, 2008, 19(3):57-62(in Chinese). doi: 10.3783/j.issn.1673-0127.2008.03.013 [13] YAO J, HUANG Q, WANG W.Analyzing ballistic missile defense system effectiveness based on functional dependency network analysis[J].The Open Cybernetics & Systemics Journal, 2015, 9(1):678-682. http://benthamopen.com/ABSTRACT/TOCSJ-9-678 [14] 杨晓凌, 邱涤珊.三种不确定性条件下的拦截器目标分配模型[J].弹箭与制导学报, 2012, 32(4):4-8. doi: 10.3969/j.issn.1673-9728.2012.04.002YANG X L, QIU D S.Interceptor allocation models under threr types of uncertainty[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(4):4-8(in Chinese). doi: 10.3969/j.issn.1673-9728.2012.04.002 [15] WILKENING D A.A simple model for calculating ballistic missile defense effectiveness[J].Science and Global Security, 1999, 8(2):183-255. doi: 10.1080/08929880008426475 [16] GLASER C L, FETTER S.Should the United States reject MAD Damage limitation and U.S.nuclear strategy toward China[J].International Security, 2016, 41(1):49-98. doi: 10.1162/ISEC_a_00248 [17] XIE J W, CHEN W C.Switching logic design for divert and attitude control system of exoatmospheric kill vehicle[C]//8th IEEE International Conference on Cybernetics and Intelligent Systems(CIS)/IEEE Conference on Robotics, Automation and Mechatronics (RAM).Piscataway, NJ: IEEE Press, 2017: 194-200. [18] 谢经纬, 陈万春.基于概率模型的攻防效能估算与仿真分析[J].导弹与航天运载技术, 2017(4):1-5. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201704001XIE J W, CHEN W C.Estimation and simulation analysis based on probabilistic model for the effectiveness of penetration and defense[J].Missiles and Space Vehicles, 2017(4):1-5(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201704001