留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定条件下贮箱区间凸模型可靠性评估

辛腾达 王华 崔村燕 赵继广 韩向阳

辛腾达, 王华, 崔村燕, 等 . 不确定条件下贮箱区间凸模型可靠性评估[J]. 北京航空航天大学学报, 2018, 44(11): 2380-2387. doi: 10.13700/j.bh.1001-5965.2018.0098
引用本文: 辛腾达, 王华, 崔村燕, 等 . 不确定条件下贮箱区间凸模型可靠性评估[J]. 北京航空航天大学学报, 2018, 44(11): 2380-2387. doi: 10.13700/j.bh.1001-5965.2018.0098
XIN Tengda, WANG Hua, CUI Cunyan, et al. Reliability evaluation of tank under uncertain conditions based on interval convex model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2380-2387. doi: 10.13700/j.bh.1001-5965.2018.0098(in Chinese)
Citation: XIN Tengda, WANG Hua, CUI Cunyan, et al. Reliability evaluation of tank under uncertain conditions based on interval convex model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2380-2387. doi: 10.13700/j.bh.1001-5965.2018.0098(in Chinese)

不确定条件下贮箱区间凸模型可靠性评估

doi: 10.13700/j.bh.1001-5965.2018.0098
基金项目: 

试验技术项目 2016SY41A0007

详细信息
    作者简介:

    辛腾达  男, 博士研究生。主要研究方向:飞行器测试与发射

    崔村燕  女, 博士, 副教授, 硕士生导师。主要研究方向:航天发射安全

    通讯作者:

    崔村燕, E-mail:13661315668@126.com

  • 中图分类号: V414.1

Reliability evaluation of tank under uncertain conditions based on interval convex model

Funds: 

Experimental Technology Research Program 2016SY41A0007

More Information
  • 摘要:

    针对不确定条件下液体推进剂贮箱的可靠性评估问题,基于贮箱应力强度与区间凸模型理论,确立了贮箱应力强度可靠性评估方法。首先,在液体推进剂贮箱数学模型的基础上,分析推导了贮箱的应力分布,结合应力强度理论,确定了贮箱的等效应力。其次,结合应力强度干涉理论及正则化区间面积比方法,定义了贮箱的应力强度区间凸模型可靠性指标。最后,结合某型火箭推进剂贮箱的实际参数,将贮箱等效应力与临界应力的不确定性转化为区间凸集形式进行了实例验证,并与椭球凸模型可靠性指标结果进行了对比。结果表明:应力强度区间凸模型可靠性指标可准确评估贮箱的完全可靠状态,并可将贮箱非完全可靠状态下的可靠度量化到[0, 1]区间。

     

  • 图 1  贮箱椭球下底模型[16]

    Figure 1.  Ellipsoid bottom model of tank[16]

    图 2  贮箱椭球上底模型

    Figure 2.  Ellipsoid roof model of tank

    图 3  贮箱圆柱筒模型

    Figure 3.  Cylinder model of tank

    图 4  临界状态函数与正则化区间

    Figure 4.  Critical state function and regularized interval

    图 5  下底经向应力与环向应力

    Figure 5.  Meridional stress and hoop stress of bottom

    图 6  上底经向应力与环向应力

    Figure 6.  Meridional stress and hoop stress of roof

    图 7  圆柱筒经向应力与环向应力

    Figure 7.  Meridional stress and hoop stress of cylinder

    图 8  下底等效应力与临界应力

    Figure 8.  Equivalent stress and critical stress of bottom

    图 9  上底等效应力与临界应力

    Figure 9.  Equivalent stress and critical stress of roof

    图 10  圆柱筒等效应力与临界应力

    Figure 10.  Equivalent stress and critical stress of cylinder

    表  1  贮箱及推进剂参数

    Table  1.   Parameters of tank and propellant

    参数 m a/mm h/mm ρ/(kg·m-3) ΔP/Pa
    数值 1.6 1 669 8 080 1 458 101 325
    下载: 导出CSV

    表  2  下底、上底壁厚参数

    Table  2.   Thickness parameters of bottom and roof

    区间/mm δb/mm δr/mm
    0≤yb(yr) < 695 2.3 2.0~5.5
    695≤yb(yr)≤b 3.8 6.0~8.5
    下载: 导出CSV

    表  3  等效应力区间凸集

    Table  3.   Interval convex set of equivalent stress

    MPa
    结构 Smin Smax
    下底 66.27 137.13
    上底 15.91 65.96
    圆柱筒 213.25 261.20
    下载: 导出CSV

    表  4  贮箱应力强度可靠性指标

    Table  4.   Stress strength reliability index of tank

    结构 指标 k=0.7, 0.8 k=0.6, 0.7 k=0.5, 0.6
    下底 η 3.73 2.99 2.25
    ηe 5.10 4.09 3.08
    上底 η 5.91 5.00 4.09
    ηe 8.32 7.04 5.76
    圆柱筒 η 1.66 0.96 0.32
    ηe 2.33 1.03 -0.28
    下载: 导出CSV
  • [1] 王心清.结构设计[M].2版.北京:中国宇航出版社, 2009:19-35.

    WANG X Q.The structural design[M].2nd ed.Beijing:China Astronautic Publishing House, 2009:19-35(in Chinese).
    [2] 张俊苗.航天器贮箱铝合金焊接接头强度特性研究[D].南京: 南京航空航天大学, 2013: 1-14 http://cdmd.cnki.com.cn/Article/CDMD-10287-1014059456.htm

    ZHANG J M.Investigation on strength properties of alumini-um alloy weld joint in spacecraft tank[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-14(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1014059456.htm
    [3] NACHTIGALL I, GEBBEKEN N, URRUTIA-GALICIA J L.On the analysis of vertical circular cylindrical tanks under earthquake excitation at its base[J].Engineering Structures, 2003, 25(2):201-213. doi: 10.1016/S0141-0296(02)00135-9
    [4] JHA A K, NARAYANAN P R, SREEKUMAR K, et al.Cracking of Al-4.5Zn-1.5Mg aluminium alloy propellant tank-A metallurgical investigation[J].Engineering Failure Analysis, 2010, 17:562-570. doi: 10.1016/j.engfailanal.2009.10.009
    [5] JHA A K, MURTY S V S N, SREEKUMAR K, et al.High strain rate deformation and cracking of AA 2219 aluminium alloy we-lded propellant tank[J].Engineering Failure Analysis, 2009, 16(7):2209-2216. doi: 10.1016/j.engfailanal.2009.03.001
    [6] BEN-HAIM Y.Convex models of uncertainty in applied mecha-nics[M].New York:Elsevier Science Publishers, 1990:151-157.
    [7] BEN-HAIM Y.A non-probabilistic concept of reliability[J].Structural Safety, 1994, 14(4):227-245. doi: 10.1016/0167-4730(94)90013-2
    [8] ELISHAKOFF I, BEN-HAIM Y.Dynamics of a thin cylindrical shell under impact with limited deterministic information on its initial imperfections[J].Structural Safety, 1990, 8(1):103-112. http://www.sciencedirect.com/science/article/pii/016747309090033L
    [9] 邱志平, 胡永明.椭球凸模型非概率可靠性度量和区间安全系数的关系[J].计算力学学报, 2016, 33(4):522-527. http://d.old.wanfangdata.com.cn/Periodical/jslxxb201604016

    QIU Z P, HU Y M.The relations of non-probabilistic reliabilitymeasures based on ellipsoidal convex model and interval safety factors[J].Chinese Journal of Computational Mechanics, 2016, 33(4):522-527(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jslxxb201604016
    [10] 王晓军.不确定初始几何缺陷杆动态屈曲失效分析[J].北京航空航天大学学报, 2011, 37(12):1484-1489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104315510

    WANG X J.Dynamic buckling failure analysis of rod with uncertain initial geometrical imperfection[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12):1484-1489(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104315510
    [11] WANG R X, WANG X J, WANG L, et al.Efficient computational method for the non-probabilistic reliability of linear structural systems[J].Acta Mechanica Solida Sinica, 2016, 29(3):284-301. doi: 10.1016/S0894-9166(16)30162-8
    [12] JIANG C, BI R G, LU G Y, et al.Structural reliability analysis using non-probabilistic convex model[J].Computer Methods in Applied Mechanics and Engineering, 2013, 254:83-98. doi: 10.1016/j.cma.2012.10.020
    [13] GUO S X, LU Z Z.A non-probabilistic robust reliability method for analysis and design optimization of structures with uncertain-but-bounded parameters[J].Applied Mathematical Modelling, 2014, 26:3-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ee6381dc6080f2a31adef28d2545a3a5
    [14] COURTOIS C, DENUIT M.Bounds on convex reliability functions with known first moments[J].Stochastics and Statistics, 2007, 177(1):365-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c8cd7214729f5720e20cd14f654a6de
    [15] KARUNA K, MANOHAR C S.Inverse problems in structural safety analysis with combined probabilistic and non-probabilistic uncertainty models[J].Engineering Structures, 2017, 150:166-175. doi: 10.1016/j.engstruct.2017.07.044
    [16] 赵亮.大直径薄壁箱体结构力学分析与精细优化设计[D].大连: 大连理工大学, 2015: 32-36. http://cdmd.cnki.com.cn/Article/CDMD-10141-1015357272.htm

    ZHAO L.The mechanical analysis and refined optimization of large-diameter and thin-walled tank structures[D].Dalian: Dalian University of Technology, 2015: 32-36(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10141-1015357272.htm
    [17] 刘雨均.运载火箭总体与结构[M].北京:国防工业出版社, 2003:206-217.

    LIU Y J.Launch vehicle overall and structure[M].Beijing:National Defence of Industry Press, 2003:206-217(in Chinese).
    [18] 张娜.非概率可靠度理论相关问题研究[D].柳州: 广西科技大学, 2015: 17-22.

    ZHANG N.The research of non-probability reliability[D].Liuzhou: Guangxi University of Science and Technology, 2015: 17-22(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  775
  • HTML全文浏览量:  155
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 录用日期:  2018-03-23
  • 网络出版日期:  2018-11-20

目录

    /

    返回文章
    返回
    常见问答