留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FDSOI背偏与体硅体偏电路的功耗性能对比

王剑 于芳 赵凯 李建忠 杨波 徐烈伟

王剑, 于芳, 赵凯, 等 . FDSOI背偏与体硅体偏电路的功耗性能对比[J]. 北京航空航天大学学报, 2018, 44(11): 2430-2436. doi: 10.13700/j.bh.1001-5965.2018.0142
引用本文: 王剑, 于芳, 赵凯, 等 . FDSOI背偏与体硅体偏电路的功耗性能对比[J]. 北京航空航天大学学报, 2018, 44(11): 2430-2436. doi: 10.13700/j.bh.1001-5965.2018.0142
WANG Jian, YU Fang, ZHAO Kai, et al. Comparison of power consumption and circuit performance between back bias in FDSOI and body bias in bulk silicon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2430-2436. doi: 10.13700/j.bh.1001-5965.2018.0142(in Chinese)
Citation: WANG Jian, YU Fang, ZHAO Kai, et al. Comparison of power consumption and circuit performance between back bias in FDSOI and body bias in bulk silicon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2430-2436. doi: 10.13700/j.bh.1001-5965.2018.0142(in Chinese)

FDSOI背偏与体硅体偏电路的功耗性能对比

doi: 10.13700/j.bh.1001-5965.2018.0142
详细信息
    作者简介:

    王剑  男, 博士研究生。主要研究方向:SOI工艺及相应电路设计、FPGA测试

    于芳  女, 研究员, 博士生导师。主要研究方向:SOI工艺及相应辐照机理、超大规模集成电路设计

    通讯作者:

    于芳, E-mail:yufang@ime.ac.cn

  • 中图分类号: TN402;TN710

Comparison of power consumption and circuit performance between back bias in FDSOI and body bias in bulk silicon

More Information
  • 摘要:

    针对功耗和工作频率对22 nm FDSOI背偏和28 nm体硅体偏电路的偏置能力进行对比和分析。以带有4级分频电路的65级环阵(RO)为例进行后仿真,后仿真结果表明,利用背偏技术的22 nm FDSOI环阵的输出频率可在57.8~206 MHz的范围内进行调节,相应的工作电流变化范围为24.4~90.4 μA;而利用体偏技术的28 nm体硅环阵的输出频率调节范围则为92.8~127 MHz,对应的工作电流变化范围为67.8~129 μA。对22 nm FDSOI工艺的环阵进行了实测,实测结果与仿真结果一致。分析认为,在功耗和性能2个方面,22 nm FDSOI电路的背偏调节能力优于28 nm体硅电路的体偏调节能力。

     

  • 图 1  体硅CMOS和厚膜SOI工艺的体偏

    Figure 1.  Body bias in bulk CMOS and thick SOI

    图 2  UTBB FDSOI的FBB和RBB背偏

    Figure 2.  Back bias in UTBB FDSOI FBB and RBB

    图 3  环阵电路结构

    Figure 3.  RO circuit structure

    图 4  28 nm体硅CMOS工艺环阵体偏电压对输出频率的影响

    Figure 4.  Output frequency response to body bias voltage of 28 nm bulk CMOS RO

    图 5  22 nm FDSOI工艺环阵背偏电压对输出频率的影响

    Figure 5.  Output frequency response to back bias voltage of 22 nm FDSOI RO

    图 6  28 nm体硅CMOS工艺环阵体偏电压对工作电流的影响

    Figure 6.  Operating current response to body bias voltage of 28 nm bulk CMOS RO

    图 7  22 nm FDSOI工艺环阵背偏电压对工作电流的影响

    Figure 7.  Operating current response to back bias voltage of 22 nm FDSOI RO

    图 8  22 nm FDSOI测试芯片版图

    Figure 8.  22 nm FDSOI test chip layout

    图 9  22 nm FDSOI工艺环阵输出频率仿真和实测对比

    Figure 9.  Comparison of output frequency of 22 nm FDSOI RO between simulation and test

    表  1  2种工艺环阵的输出频率对比

    Table  1.   Comparison of output frequency of RO between two processes

    MHz
    工艺环阵 最小值 正常值 最大值
    28nm体硅CMOS 92.8 120 127
    22nm FDSOI 57.8 158 206
    下载: 导出CSV

    表  2  2种工艺环阵的静态电流对比

    Table  2.   Comparison of standby current of RO between two processes

    A
    工艺环阵 最小值 正常值 最大值
    28 nm体硅CMOS 1.70×10-8 2.34×10-7 1.26×10-6
    22 nm FDSOI 1.33×10-9 2.99×10-9 5.34×10-9
    下载: 导出CSV

    表  3  2种工艺环阵的工作电流对比

    Table  3.   Comparison of operating current of RO between two processes

    A
    工艺环阵 最小值 正常值 最大值
    28nm体硅CMOS 6.78×10-5 1.01×10-4 1.29×10-4
    22nm FDSOI 2.44×10-5 7.03×10-5 9.04×10-5
    下载: 导出CSV

    表  4  22 nm FDSOI工艺环阵输出频率仿真与实测对比

    Table  4.   Comparison of output frequency of 22 nm FDSOI RO between simulation and test

    背偏电压/V 输出频率/MHz
    仿真值 实测值
    (0, 0) 158 154
    (+1, 0) 177 175
    (+1, -1) 201 193
    (+2, 0) 205 195
    (+2, -2) 255 239
    下载: 导出CSV
  • [1] SUN P P, WANG G A, WOODS W, et al.An adaptive body-bias low voltage low power LC VCO[C]//Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS).Piscataway, IEEE Press, 2010: 1121-1124. An adaptive body-bias low voltage low power LC VCO
    [2] HART M J, YOUNG S P, GITLIN D, et al.Structures and methods for selectively applying a well bias to portions of a programmable device: US2003/0053335A1[P].2003-03-27.
    [3] NABAA G, NAJM F, AZIZI N.FPGA architecture with threshold voltage compensation and reduced leakage: US2008/0180129A1[P].2008-07-31.
    [4] NEDELCU S, HAUER J, KLEIN L, et al.Dynamic body bias for 22 nm FD-SOI Technology[C]//Proceedings of Analog 2016 IET/GMM-Symposium.Berlin: VDE-Verlag, 2016: 44-48. https://www.vde-verlag.de/proceedings-en/454265007.html
    [5] DE STREEL G, BOL D.Impact of back gate biasing schemes on energy and robustness of ULV logic in 28 nm UTBB FDSOI technology[C]//IEEE International Symposium on Low Power Electronics and Design (ISLPED).Piscataway, NJ: IEEE Press, 2013: 255-260. https://www.researchgate.net/publication/261283584_Impact_of_back_gate_biasing_schemes_on_energy_and_robustness_of_ULV_logic_in_28nm_UTBB_FDSOI_technology
    [6] BERNARD S, BELLEVILLE M, VALENTIAN A, et al.Experimental analysis of flip-flops minimum operating voltage in 28 nm FDSOI and the impact of back bias and temperature[C]//2014 24th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS).Piscataway, NJ: IEEE Press, 2014, 5596: 1-7. https://www.researchgate.net/publication/286738046_Experimental_analysis_of_flip-flops_minimum_operating_voltage_in_28nm_FDSOI_and_the_impact_of_back_bias_and_temperature
    [7] CHANG W T, LIN S W, SHIH C T, et al.Back bias modulation of UTBB FDSOI, bulk FinFET, and SOI FinFET[C]//2016 IEEE International Nanoelectronics Conference (INEC).Piscataway, NJ: IEEE Press, 2016: 1-2. https://ieeexplore.ieee.org/document/7589260
    [8] SKOTNICHI T.Competitive SOC with UTBB SOI[C]//2011 IEEE International SOI Conference.Piscataway, NJ: IEEE Press, 2011: 1-61. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000006081792
    [9] CHRIRAT S, BEIGNE E, BERTHIER F, et al.Ultra low energy FDSOI asynchronous reconfiguration network for an IoT wireless sensor network node[C]//IEEE S3S Microelectronics Technology Unified Conference.Piscataway, NJ: IEEE Press, 2016: 1-3. https://www.mdpi.com/2079-9268/7/2/11
    [10] RASHED M.22FDX FDSOI application towards IOT for smart devices[C]//2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID).Piscataway, NJ: IEEE Press, 2017.
    [11] CHEN L, LOMBARDI F, HAN J.FDSOI SRAM cell for low power design at 22 nm technology node[C]//IEEE International Midwest Symposium on Circuits & Systems, College Station. Piscataway, NJ: IEEE Press, 2014: 527-530. http://www.ece.ualberta.ca/~jhan8/publications/FDSOISRAM_MWCAS2014.pdf
    [12] SAKURAI T, MATTSUZAWA A, DOUSEKI T.Fully-depleted SOI CMOS circuits and technology for ultra-low power applications[M].Berlin:Springer, 2006:108-113.
    [13] RABARY J M, ANANTHA C, BORIVOJE N.数字集成电路——电路、系统与设计[M].北京:电子工业出版社, 2012:140-146.

    RABARY J M, ANANTHA C, BORIVOJE N.Digital integrated circuit-Circuits, systems and designs[M].Beijing:Publishing House of Electronics Industry, 2012:140-146(in Chinese).
    [14] 黄如, 张国艳, 李映雪, 等.SOI CMOS技术及其应用[M].北京:科学出版社, 2005:168-172.

    HUANG R, ZHANG G Y, LI Y X, et al.SOI CMOS technology and its application[M].Beijing:Science Press, 2005:168-172(in Chinese).
    [15] GAO C, ZHAO X, ZHAO K, et al.DSOI-A novel structure enabling adjust circuit dynamically[J].Journal of Semiconductor, 2016, 37(6):065003. doi: 10.1088/1674-4926/37/6/065003
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  150
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-20
  • 录用日期:  2018-06-08
  • 网络出版日期:  2018-11-20

目录

    /

    返回文章
    返回
    常见问答