留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同热解温度下酚醛树脂复合材料渗透率测试

王丽燕 崔占中 陈伟华 王开石 周启超 王振峰

王丽燕, 崔占中, 陈伟华, 等 . 不同热解温度下酚醛树脂复合材料渗透率测试[J]. 北京航空航天大学学报, 2019, 45(1): 123-129. doi: 10.13700/j.bh.1001-5965.2018.0144
引用本文: 王丽燕, 崔占中, 陈伟华, 等 . 不同热解温度下酚醛树脂复合材料渗透率测试[J]. 北京航空航天大学学报, 2019, 45(1): 123-129. doi: 10.13700/j.bh.1001-5965.2018.0144
WANG Liyan, CUI Zhanzhong, CHEN Weihua, et al. Test on permeability of phenolic composites under different pyrolysis temperatures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 123-129. doi: 10.13700/j.bh.1001-5965.2018.0144(in Chinese)
Citation: WANG Liyan, CUI Zhanzhong, CHEN Weihua, et al. Test on permeability of phenolic composites under different pyrolysis temperatures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 123-129. doi: 10.13700/j.bh.1001-5965.2018.0144(in Chinese)

不同热解温度下酚醛树脂复合材料渗透率测试

doi: 10.13700/j.bh.1001-5965.2018.0144
基金项目: 

国家安全重大基础研究项目 613285

中央军委科学技术委员会基础加强类项目 0327004

详细信息
    作者简介:

    王丽燕  女, 博士研究生。主要研究方向:高超声速飞行器防隔热、热密封及热环境

    通讯作者:

    王丽燕, E-mail: wang_liyan12@163.com

  • 中图分类号: TK124

Test on permeability of phenolic composites under different pyrolysis temperatures

Funds: 

the National Security Key Basic Research Program of China 613285

the Basic Research Project of Science and Technology Commission of the Central Military Commission 0327004

More Information
  • 摘要:

    为了获得不同热解温度下酚醛树脂复合材料渗透率,设计搭建了复合材料气体渗透过程实验测量装置,提出了一种测量复合材料渗透率的方法,基于达西定律获得了复合材料渗透率。以不同热解温度下酚醛树脂复合材料为研究对象,进行了气体渗透过程实验测量,获得了材料上下表面气体压力变化曲线,同时得到了渗透过材料的气体流量,进而通过达西定律得出材料的渗透率。结果表明,该实验装置能够实现复杂孔隙复合材料的渗透率的测量。整体上,热解温度越高,渗透率越大。热解温度为400℃,渗透率量级在10-13;600℃和800℃时,渗透率量级在10-11。材料渗透率K和热解温度T满足K=9.7×10-14T-4×10-11。该实验结果为该类材料的渗透和热质扩散性能分析提供了基础物性数据。

     

  • 图 1  实验装置装配图

    Figure 1.  Schematic diagram of experimental equipment assembly

    图 2  实验系统示意图

    Figure 2.  Schematic diagram of experimental system

    图 3  不同热解温度下酚醛树脂复合材料

    Figure 3.  Phenolic composites under different pyrolysis temperatures

    图 4  原始材料的宏观结构分析

    Figure 4.  Macrostructure analysis of original material

    图 5  原始材料的微观结构分析及空心微球EDS能谱图

    Figure 5.  Microstructure analysis of original material and EDS spectrum of empty microspheres

    图 6  不同热解温度下材料的宏观图片

    Figure 6.  Macro picture of materials under different pyrolysis temperatures

    图 7  400℃热解后材料的微观结构和EDS能谱

    Figure 7.  Microstructure and EDS spectrum of material at 400℃ pyrolysis temperature

    图 8  600℃热解后材料的微观结构和EDS能谱

    Figure 8.  Microstructure and EDS spectrum of material at 600℃pyrolysis temperature

    图 9  800℃热解后材料的微观结构和EDS能谱

    Figure 9.  Microstructure and EDS spectrum of material at 800℃ pyrolysis temperature

    图 10  不同热解温度下压差随气体流速的变化

    Figure 10.  Variation of differential pressure with gas velocity under different pyrolysis temperatures

    图 11  材料渗透率随热解温度的变化

    Figure 11.  Variation of permeability of materials with pyrolysis temperature

    表  1  仪表精度及相关参数

    Table  1.   Instrument precision and related parameters

    精度及参数 游标卡尺 压力变送器 流量计
    量程范围 0~200mm 0~1.6MPa 0~40L/min
    精度 ±0.02mm ±0.1%FS ±(1.5+0.2FS)%
    最大绝对误差 0.02mm 1600Pa 3.8L/min
    注:FS表示满刻度或量程,全称full scale。
    下载: 导出CSV

    表  2  不同热解温度下材料的开孔孔隙率

    Table  2.   Porosity of materials under different pyrolysis temperatures

    热解温度/℃ 400 600 800
    开孔孔隙率/% 8.99 19.22 29.4
    下载: 导出CSV
  • [1] JOSEPH H K, DAVID W K H, MORGAN C B, et al.A review of numerical and experimental characterization of thermal protection materials-Part Ⅰ.Numerical modeling: AIAA-2006-4936[R]. Reston: AIAA, 2006.
    [2] DAVID W K H, JOSEPH H K, MORGAN C B, et al.A review of numerical and experimental characterization of thermal protection materials-Part Ⅲ.Experimental testing: AIAA-2007-5773[R]. Reston: AIAA, 2007.
    [3] 王晶, 夏新林, 李东辉, 等.微纳孔隙材料渗透率的瞬态实验研究[J].工程热物理学报, 2016, 37(9):2023-2026. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201609035.htm

    WANG J, XIA X L, LI D H, et al.Transient experiment on the permeability of micro-nano porous materials[J]. Journal of Engineering Thermophysics, 2016, 37(9):2023-2026(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201609035.htm
    [4] 谢涛, 何雅玲, 吴明, 等.气凝胶纳米多孔隔热材料传热计算模型的研究[J].工程热物理学报, 2014, 35(2):299-304. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm

    XIE T, HE Y L, WU M, et al.Study on theoretical model for the effective thermal conductivity of silica aerogel composite insulating materials[J]. Journal of Engineering Thermophysics, 2014, 35(2):299-304(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201502003.htm
    [5] 杨琼梁, 史晓鸣, 许斌, 等.烧蚀防热层与结构耦合热传导分析的交替计算法[J].宇航学报, 2011, 32(8):1854-1858. doi: 10.3873/j.issn.1000-1328.2011.08.030

    YANG Q L, SHI X M, XU B, et al.Alternative algorithm for heat transfer analysis of ablative protection layer coupled with structure[J]. Journal of Astronautics, 2011, 32(8):1854-1858(in Chinese). doi: 10.3873/j.issn.1000-1328.2011.08.030
    [6] BENZI R, SUCCI S, VERGASSOLA M.The lattice Boltzmann equation theory and applications[J]. Physics Reports, 1992, 222(3):145-197. doi: 10.1016/0370-1573(92)90090-M
    [7] ADLER P M, BERKOWITZ B.Effective medium analysis of random lattices[J]. Transport Porous Media, 2000, 40(2):145-151. doi: 10.1023/A:1006611011600
    [8] WANG T J, WU C H, LEE L J.In-plane permeability measurement and analysis in liquid composite molding[J]. Polymer Composites, 1994, 15(4):278-288. doi: 10.1002/(ISSN)1548-0569
    [9] CHEN Z Q, CHENG P, ZHAO T S.An experimental study of two phase flow and boiling heat transfer in bi-dispersed porous channels[J]. International Communication Heat and Mass Transfer, 2000, 27(3):293-302. doi: 10.1016/S0735-1933(00)00110-X
    [10] 李嘉禄, 吴晓青, 冯驰.RTM中纤维渗透率预测的研究进展[J].复合材料学报, 2006, 23(6):1-8. doi: 10.3321/j.issn:1000-3851.2006.06.001

    LI J L, WU X Q, FENG C.Research progress on the permeability prediction of fiber in RTM[J]. Acta Materiae Compositae Sinica, 2006, 23(6):1-8(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.06.001
    [11] 李月峰, 张东.膨胀石墨/LiCl-NaCl复合相变材料导热系数各向异性[J].功能材料, 2013, 44(16):2409-2415. doi: 10.3969/j.issn.1001-9731.2013.16.027

    LI Y F, ZHANG D.The anisotropic thermal conductivity LiCl-NaCl/expanded graphite composite phase change materials[J]. Journal of Functional Materials, 2013, 44(16):2409-2415(in Chinese). doi: 10.3969/j.issn.1001-9731.2013.16.027
    [12] 黄飞, 程晓丽, 俞继军.多孔隙隔热材料内压的时间响应[J].宇航学报, 2010, 31(1):233-238. doi: 10.3873/j.issn.1000-1328.2010.01.038

    HUANG F, CHENG X L, YU J J.The study of pressure respond to time on multiaperture insulating material[J]. Journal of Astronautics, 2010, 31(1):233-238(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.01.038
    [13] 郑成航, 程乐鸣, 李涛, 等.多孔介质内低热值气体燃烧及传热数值模拟[J].浙江大学学报(工学版), 2010, 44(8):1567-1572. doi: 10.3785/j.issn.1008-973X.2010.08.024

    ZHENG C H, CHENG L M, LI T, et al.Numeical simulation of low calorific gas combustion and heat transfer in porous media[J]. Journal of Zhengjiang University(Engineering Science), 2010, 44(8):1567-1572(in Chinese). doi: 10.3785/j.issn.1008-973X.2010.08.024
    [14] JIANG P X, LI M, LU T J, et al.Experimental research on convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2004, 47(10-11):2085-2096. doi: 10.1016/j.ijheatmasstransfer.2003.12.004
    [15] 江龙, 金哲权, 王丽伟, 等.不同吸附量条件下氯化锶混合吸附剂-氨的导热系数与渗透率研究[J].制冷学报, 2013, 34(3):35-39. doi: 10.3969/j.issn.0253-4339.2013.03.035

    JIANG L, JIN Z Q, WANG L W, et al.Study on the thermal conductivity and permeability of composite SrCl2-NH3 working pair under the condition of different values for adsorption quantity[J]. Journal of Refrigeration, 2013, 34(3):35-39(in Chinese). doi: 10.3969/j.issn.0253-4339.2013.03.035
    [16] GASCOIN N.High temperature and pressure reactive flows through porous media[J]. International Journal of Multiphase Flow, 2011, 37(1):24-35. doi: 10.1016/j.ijmultiphaseflow.2010.09.001
    [17] KIM H M, LETTY Y, PARK D, et al.Field evaluation of permeability of concrete linings and rock masses around underground lined rock caverns by a novel in-situ measurement system[J]. Engineering Geology, 2012, 137:97-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47cf887c8ca1395c9da4b08ac625f4b5
    [18] BYON C, KIM S J.The effect of the particle size distribution and packing structure on the permeability of sintered porous wicks[J]. International Journal of Heat and Mass Transfer, 2013, 61:499-504. doi: 10.1016/j.ijheatmasstransfer.2013.02.025
    [19] 田波, 金哲权, 魏东升, 等.固化石墨的渗透率测试[J].化工学报, 2010, 61(S2):35-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201003097980

    TIAN B, JIN Z Q, WEI D S, et al.Testing on permeability of compacted graphite[J] CIESC Journal, 2010, 61(S2):35-38(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201003097980
    [20] 中国国家标准化管理委员会.精细陶瓷密度和显气孔率试验方法: GB/T 25995-2010[S].北京: 中国标准出版社, 2011: 4-5.

    Standardization Administration of the People's Republic of China.Test methods for density and apparent porosity of fine ceramics: GB/T 25995-2010[S]. Beijing: Standards Press of China, 2011: 4-5(in Chinese).
    [21] 严兆大.热能与动力工程测试技术[M]. 2版.北京:机械工业出版社, 2005:45-47.

    YAN Z D.Thermal energy and power engineering testing technology[M]. 2nd ed.Beijing:China Machine Press, 2005:45-47(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  31
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 录用日期:  2018-07-13
  • 网络出版日期:  2019-01-20

目录

    /

    返回文章
    返回
    常见问答