-
摘要:
针对液压伺服作动器(SHA)和机电作动器(EMA)组合的余度系统中故障模式复杂的问题,采用基于键合图模型的故障诊断方法,可以诊断出系统中多种参数故障。首先建立SHA/EMA余度系统的行为模型,然后根据因果关系倒置法转换成诊断键合图模型,进而推导出计算残差的解析冗余关系式(ARR),并创建故障特征矩阵(FSM)作为故障隔离的依据。联立行为模型和诊断模型对可隔离故障进行诊断,并通过ARR估计故障参数以诊断不可隔离故障。选取典型故障进行仿真验证,结果表明可隔离故障和不可隔离故障均被成功隔离,验证了所提方法对SHA/EMA余度系统的故障诊断是有效可行的。
-
关键词:
- 余度系统 /
- 键合图 /
- 故障诊断 /
- 解析冗余关系式(ARR) /
- 故障特征矩阵(FSM)
Abstract:For the complex fault modes in the redundant system composed of servo-controlled hydraulic actuator (SHA) and electromechanical actuator (EMA), the fault diagnosis method based on bond graph model can be used to diagnose many parameter faults in the system. Firstly, the behavioral model of SHA/EMA redundant system was established, from which the diagnostic bond graph model was transformed according to the causality inversion method, and then the analytical redundancy relation (ARR) was derived to calculate system residuals, and the fault signature matrix (FSM) was created as a basis for fault isolation. Several typical faults were selected for simulation verification. Behavioral model and diagnostic model were coupled to diagnose isolated faults, and fault parameters were estimated through ARR to diagnose inseparable faults. The results show that both isolated and inseparable faults are successfully isolated, and this method is verified to be effective and feasible for fault diagnosis of SHA/EMA redundant system.
-
表 1 SHA/EMA余度系统的仿真参数
Table 1. Simulation parameters of SHA/EMA redundant system
仿真参数 数值 电液伺服阀流量增益Kq/(m2·s-1) 2.7 电液伺服阀流量-压力系数Kc/((m3·s-1)·Pa-1) 1.75×10-11 电液伺服阀电流增益Kv/(m·A-1) 1.52×10-4 液压缸的液容效应Chj/(Pa·m-3) 4.59×10-14 液压缸内泄漏Ril/(Pa·(m3·s-1)-1) 5.0×1011 液压缸活塞的有效面积Ah/m2 1.47×10-3 液压缸等效黏性阻尼Bh/(N·s·m-1) 10 000 液压缸活塞上等效质量mh/kg 55 舵面与活塞杆连接刚度K2/(N·m-1) 1.0×108 舵面等效质量mr/kg 600 电机输入电压U/V 40 电机电枢电感Lw/H 0.002 5 电机电枢电阻Rw/Ω 1.5 电机电磁力矩常数Km/(N·m·A-1) 0.2 电机-滚柱丝杆转动惯量Jm/(kg·m2) 0.001 2 电机转子轴启动摩擦转矩Se/(N·m) -0.01 轴承摩擦系数fm/((N·m·s)·rad-1) -0.000 4 滚柱丝杠导程P/m 0.002 54 滚柱丝杠连接刚度Ks/(N·m-1) 3×108 舵面与滚柱丝杠连接刚度K1/(N·m-1) 1.0×108 丝杠上等效质量m/kg 1 滚柱滚柱丝杠黏性摩擦系数fr/((N·m·s)·rad-1) 1×104 舵面负载力Fl/N -10 000 表 2 SHA/EMA余度系统的故障特征矩阵
Table 2. FSM of SHA/EMA redundant system
参数 rf1 rf2 re1 rf3 re2 re3 rf4 re4 Db Ib Lw 1 0 0 0 0 0 0 0 1 0 Rw 1 0 0 0 0 0 0 0 1 0 Km 1 1 0 0 0 0 0 0 1 1 fm 0 1 0 0 0 0 0 0 1 0 fr 0 1 0 0 0 0 0 0 1 0 r 0 1 1 0 0 0 0 0 1 1 Ks 0 0 1 0 0 0 0 0 1 1 Kq 0 0 0 0 0 0 0 1 1 0 Kc 0 0 0 0 0 0 0 1 1 0 Chj 0 0 0 0 0 0 0 1 1 0 Ril 0 0 0 0 0 0 0 1 1 1 Ah 0 0 0 0 0 0 1 1 1 1 Bh 0 0 0 0 0 0 1 0 1 1 -
[1] 范殿梁, 付永领, 郭彦青, 等.非相似余度作动系统动态力均衡控制策略[J].北京航空航天大学学报, 2015, 41(2):234-240. http://bhxb.buaa.edu.cn/CN/abstract/abstract13154.shtmlFAN D L, FU Y L, GUO Y Q, et al.Dynamic force equalization for dissimilar redundant actuator system[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):234-240(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13154.shtml [2] 王少萍.工程可靠性[M].北京:北京航空航天大学出版社, 2000:103-104.WANG S P.Engineering reliability[M].Beijing:Beihang University Press, 2000:103-104(in Chinese). [3] GAWTHROP P J, BEVAN G P.Bond-graph modeling[J]. IEEE Control Systems, 2007, 27(2):24-45. doi: 10.1109/MCS.2007.338279 [4] AROGETI S A, WANG D, CHANG B L, et al.Fault detection isolation and estimation in a vehicle steering system[J].IEEE Transactions on Industrial Electronics, 2012, 59(12):4810-4820. doi: 10.1109/TIE.2012.2183835 [5] TOUFIGHI M H, SADATI S H, NAJAFI F.Modeling and analysis of a mechatronic actuator system by using bond graph methodology[C]//2007 IEEE Aerospace Conference.Piscataway, NJ: IEEE Press, 2007: 1-8. [6] 徐流建.基于键合图和BP神经网络的并网逆变器故障诊断研究[D].乌鲁木齐: 新疆大学, 2015: 1-2.XU L J.Research on grid inverter fault diagnosis based on bond graph and the BP neural network[D].Urumqi: Xinjiang University, 2015: 1-2(in Chinese). [7] NAWAZ M H, YU L M, LIU H F, et al.Analytical method for fault detection & isolation in electro-hydrostatic actuator using bond graph modeling[C]//International Bhurban Conference on Applied Sciences and Technology.Piscataway, NJ: IEEE Press, 2017: 312-317. [8] SAMANTARAY A K, MEDJAHER K, BOUAMAMA B O, et al.Diagnostic bond graphs for online fault detection and isolation[J].Simulation Modelling Practice & Theory, 2006, 14(3):237-262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25768c3e32d8f751809ace149bf0fe8 [9] 郭丽丽.功率电传混合作动系统体系结构优化分析与设计[D].北京: 北京航空航天大学, 2014.GUO L L.Optimization analysis and design on the architecture of power-by-wire hybrid actuation system[D].Beijing: Beihang University, 2014(in Chinese). [10] 张煜东.非相似余度机电液综合作动系统性能分析和优化设计[D].北京: 北京航空航天大学, 2016.ZHANG Y D.Performance analysis and optimization design of dissimilar redundant integrated electro-hydraulic actuation system[D].Beijing: Beihang University, 2016(in Chinese). [11] SAMANTARAY A K, BOUAMAMA B O.Model-based process supervision:A bond graph approach[M].Berlin:Springer, 2008:214-217. [12] STAROSWIECKI M, COMTET-VARGA G.Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems[J].Automatica, 2001, 37(5):687-699. doi: 10.1016/S0005-1098(01)00005-X [13] CHINNIAH Y, BURTON R, HABIBI S.Failure monitoring in a high performance hydrostatic actuation system using the extended Kalman filter[J].Mechatronics, 2006, 16(10):643-653. doi: 10.1016/j.mechatronics.2006.04.004 [14] 汪宇亮.基于AMESim的工程机械液压系统故障仿真研究[D].武汉: 武汉理工大学, 2012: 47-48.WANG Y L.Research on engineering mechanical hydraulic system fault simulation study based on AMESim[D].Wuhan: Wuhan University of Technology, 2012: 47-48(in Chinese). [15] JIAN F, MARÉ J C, FU Y.Modelling and simulation of flight control electromechanical actuators with special focus on model architecting, multidisciplinary effects and power flows[J].Chinese Journal of Aeronautics, 2017, 30(1):47-65. doi: 10.1016/j.cja.2016.07.006