留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型铁磁性物体近场磁异常场数值仿真

张梦颖 王华 葛霖 程浩

张梦颖, 王华, 葛霖, 等 . 大型铁磁性物体近场磁异常场数值仿真[J]. 北京航空航天大学学报, 2018, 44(11): 2454-2462. doi: 10.13700/j.bh.1001-5965.2018.0180
引用本文: 张梦颖, 王华, 葛霖, 等 . 大型铁磁性物体近场磁异常场数值仿真[J]. 北京航空航天大学学报, 2018, 44(11): 2454-2462. doi: 10.13700/j.bh.1001-5965.2018.0180
ZHANG Mengying, WANG Hua, GE Lin, et al. Numerical simulation of near-field magnetic anomaly field for large-scale ferromagnetic objects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2454-2462. doi: 10.13700/j.bh.1001-5965.2018.0180(in Chinese)
Citation: ZHANG Mengying, WANG Hua, GE Lin, et al. Numerical simulation of near-field magnetic anomaly field for large-scale ferromagnetic objects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2454-2462. doi: 10.13700/j.bh.1001-5965.2018.0180(in Chinese)

大型铁磁性物体近场磁异常场数值仿真

doi: 10.13700/j.bh.1001-5965.2018.0180
详细信息
    作者简介:

    张梦颖  女, 硕士研究生。主要研究方向:磁异常探测与路径修正

    王华  男, 博士, 教授, 博士生导师。主要研究方向:目标近场探测、微小型无人飞行平台设计

    通讯作者:

    王华, E-mail:whua402@163.com

  • 中图分类号: P318

Numerical simulation of near-field magnetic anomaly field for large-scale ferromagnetic objects

More Information
  • 摘要:

    磁异常探测是一种在地球物理领域有着广泛应用的探测方法,磁异常场的空间分布规律信息是磁异常探测的主要理论依据。对矩形铁磁性物体空间磁场模型进行了推导,利用ANSYS Maxwell分析了大型铁磁性物体近场的磁异常场空间分布规律。针对不同地磁场方向条件,得到了近场空间磁感应强度总量分布及矢量分布规律,揭示了在不同条件下磁感应强度模量场和矢量场都具有普遍的对称性和规律性。通过对仿真模型进行缩比试验,测量了类似条件下模型近场的磁感应强度模量场和矢量场信息,验证了仿真得到的磁异常场空间分布规律的一致性和正确性。

     

  • 图 1  长方体铁磁性物体磁化的分子环流模型

    Figure 1.  Molecular current model of cuboid magnetized ferromagnetic objects

    图 2  仿真材料的B-H磁化曲线

    Figure 2.  B-H magnetization curve of simulation materials

    图 3  仿真模型以及分析平面示意图

    Figure 3.  Schematic of simulation model and analysis planes

    图 4  地磁场条件为E=0°,θ=0°时磁感应强度模量大小分布

    Figure 4.  Magnitude distribution of magnetic induction intensity under geomagnetic condition of E=0° and θ=0°

    图 5  地磁场条件为E=0°,θ=0°时磁感应强度矢量分布

    Figure 5.  Vector distribution of magnetic induction intensity under geomagnetic condition of E=0° and θ=0°

    图 6  地磁场条件为E=0°,θ=45°时磁感应强度模量大小分布

    Figure 6.  Magnitude distribution of magnetic induction intensity under geomagnetic condition of E=0°and θ=45°

    图 7  地磁场条件为E=0°,θ=45°时磁感应强度矢量分布

    Figure 7.  Vector distribution of magnetic induction intensity under geomagnetic condition of E=0°and θ=45°

    图 8  地磁场条件为E=45°,θ=0°时磁感应强度模量大小分布

    Figure 8.  Magnitude distribution of magnetic induction intensity under geomagnetic condition of E=45°and θ=0°

    图 9  地磁场条件为E=45°,θ=0°时磁感应强度矢量分布

    Figure 9.  Vector distribution of magnetic induction intensity under geomagnetic condition of E=45°and θ=0°

    图 10  室外缩比模型试验

    Figure 10.  Outdoor test of shrinkage ratio model

    图 11  试验模型上方100 mm高度平面磁异常空间分布

    Figure 11.  Spatial distribution of magnetic anomaly at 100 mm height plane above test model

  • [1] LIU B, CAO Y, ZHANG H, et al.Weak magnetic flux leakage:A possible method for studying pipeline defects located either inside or outside the structures[J].NDT & E International, 2015, 74:81-86. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cs%2f0412029
    [2] ZHANG M Y, WANG H, GE L, et al.Automatic search algorithms for near-field ferromagnetic targets based on magnetic anomaly detection[J/OL].Mathematical Problems in Engineering, (2018-07-05)[2018-07-06].https://doi.org/10.1155/2018/2130236/.
    [3] EGE Y, KALENDER O, NAZLIBILEK S.Direction finding of moving ferromagnetic objects inside water by magnetic anomaly[J].Sensors & Actuators A Physical, 2008, 147(1):52-59. http://www.sciencedirect.com/science/article/pii/S0924424708001386
    [4] 李泽林, 姚长利, 郑元满, 等.数据空间磁异常模量三维反演[J].地球物理学报, 2015, 58(10):3804-3814. doi: 10.6038/cjg20151030

    LI Z L, YAO C L, ZHENG Y M, et al.3D data-space inversion of magnetic amplitude data[J].Chinese Jourral of Geophysics, 2015, 58(10):3804-3814(in Chinese). doi: 10.6038/cjg20151030
    [5] ZALEVSKY Z, BREGMAN Y, SALOMONSKI N, et al.Resolution enhanced magnetic sensing system for wide coverage real time UXO detection[J].Journal of Applied Geophysics, 2012, 84(9):70-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3733038938c609147c1d6ecfd64d3021
    [6] 张恒磊, 胡祥云, 刘天佑.基于二阶导数的磁源边界与顶部深度快速反演[J].地球物理学报, 2012, 55(11):3839-3847. doi: 10.6038/j.issn.0001-5733.2012.11.031

    ZHANG H L, HU X Y, LIU T Y.Fast inversion of magnetic source boundary and top depth via second order derivative[J].Chinese Journal of Geophysics, 2012, 55(11):3839-3847(in Chinese). doi: 10.6038/j.issn.0001-5733.2012.11.031
    [7] GADRE A S, STILWELL D J, DAVIS B.An information-theoretic approach to underwater magnetic dipole localization[C]//Proceedings of MTS/IEEE Oceans.Piscataway, NJ: IEEE Press, 2005, 1: 703-710. https://ieeexplore.ieee.org/document/1639835
    [8] SHEINKER A, FRUMKIS L, GINZBURG B, et al.Magnetic anomaly detection using a three-axis magnetometer[J].IEEE Transactions on Magnetics, 2009, 45(1):160-167. doi: 10.1109/TMAG.2008.2006635
    [9] LIU D, XU X, FEI C, et al.Direction identification of a moving ferromagnetic object by magnetic anomaly[J].Sensors & Actuators A Physical, 2015, 229:147-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5353ef90f3d7b82956cceb7a0f6d5600
    [10] NARA T, SUZUKI S, ANDO S.A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients[J].IEEE Transactions on Magnetics, 2006, 42(10):3291-3293. doi: 10.1109/TMAG.2006.879151
    [11] NARA T, ITO W.Moore-Penrose generalized inverse of the gradient tensor in Euler's equation for locating a magnetic dipole[J].Journal of Applied Physics, 2014, 115(17):17E504. doi: 10.1063/1.4861675
    [12] BEIKI M, CLARK D A, AUSTIN J R, et al.Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data[J].Geophysics, 2012, 77(6):J23-J37. doi: 10.1190/geo2011-0437.1
    [13] 张恒磊, MARANGONI Y R, 左仁广, 等.改进的各向异性标准化方差探测斜磁化磁异常源边界[J].地球物理学报, 2014, 57(8):2724-2731. http://www.cqvip.com/QK/94718X/201408/662244326.html

    ZHANG H L, MARANGONI Y R, ZUO R G, et al.The improved anisotropy normalized variance for detecting non-vertical magnetization anomalies[J].Chinese Journal of Geophysics, 2014, 57(8):2724-2731(in Chinese). http://www.cqvip.com/QK/94718X/201408/662244326.html
    [14] BLAKELY R J.Potential theory in gravity and magnetic applications[M].Cambrige:Cambrige University Press, 1996:75-79.
    [15] 刘宏娟.矩形永磁体三维磁场空间分布研究[D].北京: 北京工业大学, 2006: 4-11. http://cdmd.cnki.com.cn/Article/CDMD-10005-2006172795.htm

    LIU H J.Research of the three-dimensional magnetic field distribution around a rectangular permanent magnet[D].Beijing: Beijing University of Technology, 2006: 4-11(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10005-2006172795.htm
    [16] 任来平, 谭美景, 李凯锋, 等.水下目标磁异常强度与质量磁化强度分析[J].海洋测绘, 2012, 32(2):7-10. doi: 10.3969/j.issn.1671-3044.2012.02.003

    REN L P, TAN M J, LI K F, et al.Analysis on magnetic anomaly strength and mass magnetization of underwater object[J].Hydrographic Surveying and Charting, 2012, 32(2):7-10(in Chinese). doi: 10.3969/j.issn.1671-3044.2012.02.003
  • 加载中
图(11)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  140
  • PDF下载量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 录用日期:  2018-07-10
  • 网络出版日期:  2018-11-20

目录

    /

    返回文章
    返回
    常见问答