-
摘要:
为了克服相控阵波束仅具有角度分辨力的缺陷,频控阵通过在阵元间加入相对于载频十分微小的频率增量,实现了波束的距离-角度二维相关。引入3种接收信号处理机制,并对其进行理论推导分析,仿真说明了其中2种机制的实用性。针对指向误差存在情况下,估计的目标导向矢量与真实的目标导向矢量失配的问题,采用稳健Capon波束形成(RCB)算法,给出纠正偏差后的导向矢量闭式解,并在2种信号处理机制下,对其方向图进行了仿真。结果表明,利用RCB算法能在目标位置形成高增益,干扰位置形成零陷,验证了算法在频控阵中应用的有效性。
-
关键词:
- 频控阵 /
- 信号处理 /
- 指向误差 /
- 稳健Capon波束形成(RCB) /
- 导向矢量
Abstract:In order to overcome the defect that the phased array beam has only angular resolution, the two-dimensional range-angle correlation of the beam is realized by adding a very small frequency increment relative to the carrier frequency between the array elements in the frequency diverse array. Three kinds of reception signal processing mechanism were introduced, and the theoretical deduction and analysis were carried out. The simulation shows the practicability of the two mechanisms. Aimed at target steering vector estimation and real target steering vector mismatch problem in the presence of the pointing error, the closed solution of the corrected steering vector is given by using robust Capon beamforming(RCB) algorithm. And in the two kinds of signal processing mechanism, the beampattern is simulated. The simulation results show that the RCB algorithm can form a high gain in the target position and form a null in the interference position. The effectiveness of the algorithm in the frequency diverse array is verified.
-
表 1 仿真参数
Table 1. Simulation parameters
参数 数值 ULA-FDA阵元总数N 12 载频f0/GHz 10 频偏Δf/kHz 4.5 阵元间距d c/(2f0) 目标位置 (30°, 50 km) -
[1] WANG W Q.Subarray-based frequency diverse array radar for target range-angle estimation[J].IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):3057-3067. doi: 10.1109/TAES.2014.120804 [2] GAO K D, WANG W Q, CAI J Y, et al.Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J].IET Microwaves, Antennas & Propagation, 2016, 10(8):880-884. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8552c7eecee9c97195dabe243ebd23fb [3] ANTONIK P, WICKS M C, GRIFFITHS H D, et al.Frequency diverse array radars[C]//Proceedings of the IEEE Radar Conference.Piscataway, NJ: IEEE Press, 2006: 215-217. [4] SECMEN M, DEMIR S, HIZAL A, et al.Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]//Proceedings of the IEEE Radar Conference.Piscataway, NJ: IEEE Press, 2007: 427-430. [5] WANG W Q.Overview of frequency diverse array in radar and navigation applications[J].IET Radar, Sonar & Navigation, 2015, 10(6):1001-1012. http://cn.bing.com/academic/profile?id=72f336a22aab248c0ac9f91f736feff6&encoded=0&v=paper_preview&mkt=zh-cn [6] WANG W Q.Frequency diverse array antenna:New opportunities[J].IEEE Antennas and Propagation Magazine, 2015, 57(2):145-152. doi: 10.1109/MAP.2015.2414692 [7] WANG Z B, TIGREK F, KRASNOV O, et al.Interleaved OFDM radar signals for simultaneous polarimetric measurements[J].IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3):2085-2099. doi: 10.1109/TAES.2012.6237580 [8] ZHANG T X, XIA X G, KONG L J.IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J].IEEE Transactions on Signal Process, 2014, 62(18):4748-4759. doi: 10.1109/TSP.2014.2339796 [9] AHMED S, ALOUINI M S.MIMO-radar waveform covariance matrix for high SINR and low side-lobe levels[J].IEEE Transactions on Signal Process, 2014, 62(8):2056-2065. doi: 10.1109/TSP.2014.2307282 [10] CUI G L, LI H B, RANGASWAMY M.MIMO radar waveform design with constant modulus and similarity constraints[J].IEEE Transactions on Signal Processing, 2014, 62(2):343-353. doi: 10.1109/TSP.2013.2288086 [11] XU J W, XU Y H, LIAO G S.Direct data domain based adaptive beamforming for FDA-MIMO radar[C]//Proceedings of IEEE Statistical Signal Processing Workshop.Piscataway, NJ: IEEE Press, 2016: 1-5. [12] XU J W, KANG J L, LIAO G S, et al.Mainlobe deceptive jammer suppression with FDA-MIMO radar[C]//Proceedings of IEEE 10th Sensor Array and Multichannel Signal Processing Workshop.Piscataway, NJ: IEEE Press, 2018: 504-508. [13] 张小飞, 陈华伟, 仇小锋, 等.阵列信号处理及MATLAB实现[M].北京:电子工业出版社, 2015:50-55.ZHANG X F, CHEN H W, QIU X F, et al.Array signal processing and MATLAB implementation[M].Beijing:Publishing House of Electronics Industry, 2015:50-55(in Chinese). [14] XU J W, LIAO G S, ZHU S Q.Robust adaptive beamforming based on response vector optimization[C]//Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing.Piscataway, NJ: IEEE Press, 2014: 6043-6046. [15] FENG Y, LIAO G S, XU J W, et al.Robust adaptive beamforming against large steering vector mismatch using multiple uncertainty sets[J].Signal Processing, 2018, 152:320-330. doi: 10.1016/j.sigpro.2018.06.017 [16] LI J, STOICA P, WANG Z S.On robust Capon beamforming and diagonal loading[J].IEEE Transactions on Signal Processing, 2003, 51(7):1702-1715. doi: 10.1109/TSP.2003.812831 [17] JONES A M, RIGLING B D.Frequency diverse array radar receiver architectures[C]//2012 International Waveform Diversity & Design Conference.Piscataway, NJ: IEEE Press, 2012: 211-217. [18] 陈明建, 罗景青, 唐希雯, 等.最差性能最优的稳健宽带Capon波束形成算法[J].宇航学报, 2013, 34(3):434-441. doi: 10.3873/j.issn.1000-1328.2013.03.020CHEN M J, LUO J Q, TANG X W, et al.Robust broadband Capon beamforming algorithm based on worst case performance optimization[J].Journal of Astronautics, 2013, 34(3):434-441(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.03.020