-
摘要:
代表性体积单元(RVE)法是短纤维增强复合材料性能预测的常用方法,其RVE生成效率是预测效率的重要影响因素。针对现有的随机顺序吸附(RSA)方法生成RVE时,布尔运算次数多、效率低的问题,通过在布尔运算前加入对纤维形心距的判断,过滤掉一部分随机生成的且与已有纤维相交的纤维,以减少布尔运算次数,提出了一种考虑过滤的随机顺序吸附(FRSA)方法。通过将改进后的FRSA方法在不同RVE参数和方法参数下生成RVE所需布尔运算次数和所需时间与基于布尔运算的随机顺序吸附(BORSA)方法进行比较,证明了FRSA方法的先进性。
-
关键词:
- 短纤维增强复合材料 /
- 数值建模 /
- 随机顺序吸附(RSA)方法 /
- 过滤法 /
- 纤维形心距
Abstract:The representative volume element (RVE) method is a common numerical modeling method for predicting the material properties of short fiber reinforced composites. The RVE generation efficiency is an important factor affecting the efficiency of the property prediction. For the problem of too many Boolean operation times which cause low efficiency of Boolean operation when the existing random sequential adsorption (RSA) method is used to generate RVE, the centroid distance calculations between the lasted randomly generated fibers and the existing fibers are introduced. Using the centroid distance, some randomly generated fibers, which are intersecting with the existing fibers, are filtered out to reduce the number of Boolean operations. And a filter based random sequential adsorption (FRSA) method for modeling RVE is presented. By comparing the number of Boolean operations and the time cost for generating RVE, the FRSA method has been verified, and the verification is performed with different RVE parameters and method parameters using improved FRSA method and Boolean operation based random sequential adsorption (BORSA).
-
表 1 不同VCmax情况下的RVE建模效率对比
Table 1. Comparison of RVE modeling efficiency for various VCmax
VCmax/% T′/T″ t′/t″ 5 0.76 0.86 8 0.71 0.85 11 0.82 0.86 表 2 不同dc情况下的RVE建模时间比
Table 2. Ratios of RVE modeling time for various dc
VCmax/% t′/t″ dc= D dc= D 5 0.84 0.86 8 0.81 0.82 11 0.66 0.72 14 0.56 0.74 17 0.48 0.52 20 — 0.63 23 — 0.37 表 3 不同AR情况下的RVE建模时间比
Table 3. Ratios of RVE modeling time for various AR
AR t′/t″ dc= D dc= D dc= D 4 0.74 0.87 0.85 6 0.82 0.92 0.94 8 0.88 0.93 0.94 -
[1] 郭云竹.热塑性复合材料研究及其在航空领域中的应用[J].纤维复合材料, 2016, 33(3):20-23. doi: 10.3969/j.issn.1003-6423.2016.03.005GUO Y Z.Research on thermoplastic composites and its application in aviation[J].Fiber Composites, 2016, 33(3):20-23(in Chinese). doi: 10.3969/j.issn.1003-6423.2016.03.005 [2] 郭茹南.低密度纤维骨架增强泡沫碳的制备与结构性能演化[D].哈尔滨: 哈尔滨工业大学, 2016: 1-4. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016913443.htmGUO R N.Preparation and structural properties evolution of low density fiber reinforced foamed carbon[D].Harbin: Harbin Institute of Technology, 2016: 1-4(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1016913443.htm [3] 张兴福, 曹永敏, 崔洪涛, 等.菱镁复合保温建筑墙板研究[J].21世纪建筑材料, 2010, 2(5):20-24. doi: 10.3969/j.issn.1003-1324.2010.05.007ZHANG X F, CAO Y M, CUI H T, et al.Study on magnesium composite insulation wallboard[J].21st Century Building Materials, 2010, 2(5):20-24(in Chinese). doi: 10.3969/j.issn.1003-1324.2010.05.007 [4] 孔徐洁.不同长度玻璃纤维增强复合材料力学性能与界面性能的研究[D].上海: 东华大学, 2016: 1-3. http://cdmd.cnki.com.cn/Article/CDMD-10255-1016756346.htmKONG X J.Study on mechanical properties and interfacial properties of glass fiber reinforced composites with different lengths[D].Shanghai: Donghua University, 2016: 1-3(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10255-1016756346.htm [5] 孔莉莉, 成玲, 万培培, 等.苎麻纤维复合材料医用夹板的开发及智能化[J].材料导报, 2018, 32(7):1202-1208. http://d.old.wanfangdata.com.cn/Periodical/cldb201807025KONG L L, CHENG L, WAN P P, et al.Development and intelligentization of ramie fiber composite material splints[J].Materials Review, 2018, 32(7):1202-1208(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cldb201807025 [6] 姚树镇.短切玻璃纤维毡在玻璃钢船艇上的应用[J].中外船舶科技, 2011(2):37-38. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYCP201102012.htmYAO S Z.Application of chopped glass fiber mat on fiberglass boat[J].Chinese and Foreign Shipbuilding Technology, 2011(2):37-38(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZYCP201102012.htm [7] 郑晓霞, 郑锡涛, 缑林虎.多尺度方法在复合材料力学分析中的研究进展[J].力学进展, 2010, 40(1):41-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000429986ZHENG X X, ZHENG X T, GOU L H.Research progress of multi-scale methods in mechanical analysis of composite materials[J].Advances in Mechanics, 2010, 40(1):41-56(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000429986 [8] 刘振宇, 叶燎原, 潘文.等效体积单元(RVE)在砌体有限元分析中的应用[J].工程力学, 2003, 20(2):31-35. doi: 10.3969/j.issn.1000-4750.2003.02.007LIU Z Y, YE L Y, PAN W.Application of equivalent volume element (RVE) in masonry finite element analysis[J].Engineering Mechanics, 2003, 20(2):31-35(in Chinese). doi: 10.3969/j.issn.1000-4750.2003.02.007 [9] 谢悦, 宿晓如, 冯春冬, 等.颗粒增强橡胶复合材料有效力学性能预测分析[J].兵器装备工程学报, 2017, 38(7):142-147. doi: 10.11809/scbgxb2017.07.030XIE Y, SU X R, FENG C D, et al.Predictive analysis of effective mechanical properties of particle reinforced rubber composites[J].Journal of Ordnance Equipment Engineering, 2017, 38(7):142-147(in Chinese). doi: 10.11809/scbgxb2017.07.030 [10] 田文龙, 齐乐华, 周计明, 等.基于随机顺序吸附法的Csf/Mg周期性体胞模型的建立及其应用[J].稀有金属材料与工程, 2013, 42(8):1601-1605. doi: 10.3969/j.issn.1002-185X.2013.08.013TIAN W L, QI L H, ZHOU J M, et al.The establishment and application of Csf/Mg periodic cell model based on random sequential adsorption method[J].Rare Metal Materials and Engineering, 2013, 42(8):1601-1605(in Chinese). doi: 10.3969/j.issn.1002-185X.2013.08.013 [11] 霍金星, 齐乐华, 周计明.ABAQUS二次开发在Csf/Mg复合材料微观几何建模中的应用[J].特种铸造及有色合金, 2011, 31(4):322-324. doi: 10.3870/tzzz.2011.04.009HUO J X, QI L H, ZHOU J M.Application of secondary development of ABAQUS in micro geometry modeling of Csf/Mg composites[J].Special Casting & Nonferrous Alloys, 2011, 31(4):322-324(in Chinese). doi: 10.3870/tzzz.2011.04.009 [12] KARI S, BERGER H, GABBERT U.Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites[J].Computational Materials Science, 2007, 39(1):198-204. http://www.sciencedirect.com/science/article/pii/S0927025606001522 [13] TIAN W, QI L, ZHOU J, et al.Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications[J].Composite Structures, 2015, 131(1):366-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e41b489211cd40ef586dc715e40ce02 [14] GHOSSEIN E, LÉVESQUE M.Random generation of periodic hard ellipsoids based on molecular dynamics:A computationally-efficient algorithm[J].Journal of Computational Physics, 2013, 253:471-490. doi: 10.1016/j.jcp.2013.07.004 [15] SCHNEIDER M.The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics[J].Computational Mechanics, 2017, 59(2):247-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47b17a5bce133bdb71378268bdc4d01e [16] GUSEV A A.Representative volume element size for elastic composites:A numerical study[J].Journal of the Mechanics & Physics of Solids, 1997, 45(9):1449-1459. http://www.sciencedirect.com/science/article/pii/S0022509697000161 [17] FAESSEL M, DELISÉE C, BOS F, et al.3D modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis[J].Composites Science & Technology, 2005, 65(13):1931-1940. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1e78448b1c2f270de96da5116b83c1c [18] EBERLY D, TOOLS G.Intersection of cylinders[J].Israel Journal of Mathematics, 2000, 113(1):231-241. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0810.0572 [19] LIU H, ZENG D, LI Y, et al.Development of RVE-embedded solid elements model for predicting effective elastic constants of discontinuous fiber reinforced composites[J].Mechanics of Materials, 2016, 93:109-123. doi: 10.1016/j.mechmat.2015.10.011 [20] WILLIAMS S R, PHILIPSE A P.Random packings of spheres and spherocylinders simulated by mechanical contraction[J].Physical Review E, 2003, 67(5):051301. doi: 10.1103/PhysRevE.67.051301 [21] 刘钊, 朱平, 朱超.长纤维复合材料随机结构生成及其弹性性能预测方法:CN 106815408 A[P].2016-12-23.LIU Z, ZHU P, ZHU C.Random structure generation and prediction of elastic properties of long fiber composites: CN 106815408 A[P].2016-12-23(in Chinese).