-
摘要:
在轨服务是未来卫星主要发展趋势之一,在轨软件重构和硬件重构技术是其主要核心技术。基于此,首先创新移植电磁原理和"笔帽式"锁紧原理,提出了一种适用于立方体纳卫星的1U微型电磁对接硬件重构设计方案。然后,基于所设计的电磁对接机构,通过电磁力和力矩精确模型和远场模型的比较分析,明确了远场模型适用范围为对接距离大于0.1 m。最后,利用数值仿真方法,分析得到单个线圈和含铁芯的通电螺线管比值约在10-8~10-4量级,为远场模型的修正提供参考。
Abstract:On-orbit service is one of the main developing trends of future satellites, where on-orbit software reconfiguration and hardware assembly are the key technologies. In this paper, combined with the electromagnetic technology and "pen cap" docking mechanism, an autonomous rendezvous and docking control mechanism with 1U dimension was designed to be used in the cubesat field. And based on the designed electromagnetic docking mechanism, the comparison between precise model and distant field model of electromagnetic force and moment was conducted, and the application range for distant field model with docking distance more than 0.1 m was gained. Using simulation analysis method, it is found that the ratio of without iron core and with iron core is in the range of 10-8~10-4, which provides reference for distant field model correction.
-
Key words:
- nanosatellite /
- on-orbit reconfiguration /
- electromagnetic docking /
- solenoid coil /
- nonlinear
-
-
[1] WOELLERT K, EHRENFREUND P, RICCO A J, et al.Cubesat:Cost-effective science and technology platforms for emerging and developing nations[J].Advances in Space Research, 2011, 47(4):663-684. doi: 10.1016/j.asr.2010.10.009 [2] SELVA D, KREJCI D.A survey and assessment of the capabilities of Cubesats for earth observation[J].Acta Astronautica, 2012, 74(27):50-68. [3] SHIMMIN R, SCHALKWYCK J, PEREZ A D, et al.Small spacecraft state of the art report 2015[C]//NASA Technical Memorandum.Washington, D.C: NASA, 2016. [4] SCHOL Z, JUANG J N.Toward open source CubeSat design[J].Acta Astronautica, 2015, 115:384-392. doi: 10.1016/j.actaastro.2015.06.005 [5] 苏瑞丰, 张科科, 宋海伟.甚小型卫星发展综述[J].航天器工程, 2012, 22(6):104-111.SU R F, ZHANG K K, SONG H W.Summarization of very small satellite development[J].Spacecraft Engineering, 2012, 22(6):104-111(in Chinese). [6] KONG E M C, KWON D W, SCHWEIGHART S A, et al.Electromagnetic formation flight for multisatellite arrays[J].Journal of Spacecraft and Rockets, 2004, 41(4):659-666. doi: 10.2514/1.2172 [7] MILLER D W, SEDWICK R J, KONG E M C, et al.Electromagnetic formation flight for sparse aperture telescopes[C]//Aerospace Conference Proceedings.Piscataway, NJ: IEEE Press, 2002: 729-742. [8] FEHSE W.Automated rendezvous and docking of spacecraft[M].Cambridge:Cambridge University Press, 2003:200-201. [9] RINGELBERG J.Docking assembly techniques and challenges[C]//AIAA Space Conference & Exposition.Reston: AIAA, 2007: 1-5. [10] JOSEPH P S.Dynamics of reconfigurable multibody space systems connected by magnetic flux pinning[D].New York: Cornell University, 2011: 4-10. [11] 朱仁璋, 王鸿芳, 丛云天, 等.中外交会对接技术比较研究[J].航天器工程, 2013, 22(3):8-15. doi: 10.3969/j.issn.1673-8748.2013.03.002ZHU R Z, WANG H F, CONG Y T, et al.Comparative study of chinese and foreign rendezvous and docking technologies[J].Spacecraft Engineering, 2013, 22(3):8-15(in Chinese). doi: 10.3969/j.issn.1673-8748.2013.03.002 [12] 张元文, 杨乐平.空间电磁对接控制问题[J].控制理论与应用, 2010, 27(8):1069-1074.ZHANG Y W, YANG L P.The control of spatial electromagnetic docking[J].Control Theory & Applications, 2010, 27(8):1069-1074(in Chinese). [13] ZHANG Y, YANG L, ZHU Y, et al.Self-docking analysis and velocity-aimed control for spacecraft electromagnetic docking[J].Advances in Space Research, 2016, 57(11):2314-2325. doi: 10.1016/j.asr.2016.03.022 [14] 张三慧.大学物理学-电磁学[M].北京:清华大学出版社, 1999:120-130.ZHANG S H.University physics-electromagnetism[M].Beijing:Tsinghua University Press, 1999:120-130(in Chinese). [15] 张元文, 杨乐平.空间电磁对接的非线性控制[J].控制理论与应用, 2011, 28(8):1181-1186.ZHANG Y W, YANG L P.Nonlinear control of space electromagnetic docking[J].Control Theory & Applications, 2011, 28(8):1181-1186(in Chinese).