-
摘要:
针对飞机结冰条件下的飞行安全问题,在线性结冰影响模型的基础上构建了非线性结冰影响模型,并建立了结冰飞机纵向非线性动力学模型。利用反馈线性化理论与模糊控制原理相结合,重构设计了结冰条件下的纵向控制律,既保证了动态响应特性,又改善了控制器的抗干扰能力,使飞机具备一定的容冰飞行能力。通过仿真模拟了飞机在不同结冰严重程度以及干扰下的纵向响应,并与常规PID控制进行对比,验证了设计控制律的有效性和抗干扰能力。结果表明,该设计方案下的各状态参数动态响应均能较快较好地收敛,能更精准快速地跟踪俯仰角指令,且抗干扰能力、动态性能均优于常规PID控制。
Abstract:For the flight safety of icing aircraft, the nonlinear icing effect model was built based on the linear icing effect model, and then the nonlinear longitudinal dynamics model of icing aircraft was established. Through the combination of feedback linearization and fuzzy control theory, the reconfigurable design of longitudinal control law under icing condition was completed, which ensures the dynamic response characteristic and promotes the anti-interference ability of the controller, allowing the aircraft to fly under icing condition. The simulation of the aircraft longitudinal dynamic response under various icing severity and interference conditions was carried out, and then by comparison with the conventional PID control, the effectiveness and anti-interference ability of the designed control law are verified. The results show that the dynamic response of each state parameter under the designed control law can converge quickly and greatly and track the pitch angle instructions faster and more accurately. In addition, the anti-interference capability and dynamic performance of the designed control law are better than those of the conventional PID control.
-
表 1 纵向飞行品质要求
Table 1. Longitudinal flight quality requirements
标准 界限 上升时间 tr≤5 s 超调量 σ < 20% 稳态误差 ess≤0.1 调节时间 ts≤8 s 短周期阻尼比 0.3≤ζsp≤2 表 2 模糊语言规则库
Table 2. Fuzzy language rule base
E NB NM NS ZO PS PM PB NB PB PB PM PM PS ZO ZO NM PB PB PM PS PS ZO NS NS PB PM PM PS ZO NS NS ZO PM PM PS ZO NS NM NM PS PS PS ZO NS NS NM NB PM PS ZO NS NM NM NM NB PB ZO ZO NM NM NM NB NB 表 3 俯仰角响应的性能品质
Table 3. Performance quality of pitch angle response
性能品质 设计控制律 PID控制 η=0.15 η=0.3 η=0.15 η=0.3 tr/s 0.47 0.51 1.54 1.63 σ/% 0 0 10.29 11.14 ess 0 0 0.02 0.02 ts/s 0.9 0.92 5.23 6.68 -
[1] BRAGG M B, HUTCHISON T, MERRET J, et al.Effect of ice accretion on aircraft flight dynamics: AIAA-2000-0360[R].Reston: AIAA, 2000. [2] POKHARIYAL D, BRAGG M B, HUTCHISON T, et al.Aircraft flight dynamics with simulated ice accretion: AIAA-2001-0541[R].Reston: AIAA, 2001. [3] 徐忠达, 苏媛, 曹义华.平尾积冰对飞机纵向气动参数的影响[J].航空学报, 2013, 34(7):1563-1571. http://d.old.wanfangdata.com.cn/Periodical/hkxb201307007XU Z D, SU Y, CAO Y H.Effects of tailplane icing on aircraft longitudinal aerodynamic parameters[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1563-1571(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201307007 [4] 张强, 刘艳, 高正红.结冰条件下的飞机飞行动力学仿真[J].飞行力学, 2011, 29(3):4-7. http://d.old.wanfangdata.com.cn/Periodical/fxlx201103002ZHANG Q, LIU Y, GAO Z H.Simulation of aircraft flight dynamics affected by ice accretion[J].Flight Dynamics, 2011, 29(3):4-7(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxlx201103002 [5] 周莉, 徐浩军, 龚胜科, 等.飞机结冰特性及防除冰技术研究[J].中国安全科学学报, 2010, 20(6):105-110. doi: 10.3969/j.issn.1003-3033.2010.06.018ZHOU L, XU H J, GONG S K, et al.Research of aircraft icing characteristics and anti-icing and de-icing technology[J].China Safety Science Journal, 2010, 20(6):105-110(in Chinese). doi: 10.3969/j.issn.1003-3033.2010.06.018 [6] 王海涛, 毛玉坤.机翼结冰分析与防除冰系统设计验证[J].航空工程进展, 2016, 7(4):439-446. http://d.old.wanfangdata.com.cn/Periodical/hkgcjz201604007WANG H T, MAO Y K.Analysis of aircraft icing and design of anti-icing system[J].Advances in Aeronautical Science and Engineering, 2016, 7(4):439-446(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkgcjz201604007 [7] 杜雁霞, 李明, 桂业伟, 等.飞机结冰热力学行为研究综述[J].航空学报, 2017, 38(2):277-288. http://d.old.wanfangdata.com.cn/Periodical/hkxb201702003DU Y X, LI M, GUI Y W, et al.Review of themodynamic bahaviors in aircraft icing process[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):277-288(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201702003 [8] FALKENA W, BORST C, MULDER J A.Investigation of pratical flight envelope protection systems for small aircraft: AIAA-2010-0711[R].Reston: AIAA, 2010. [9] ANSELL P J, BRAGG M B, KERHO M F.Envelope protection system using flag hinge moment measurements: AIAA-2010-4255[R].Reston: AIAA, 2010. [10] GURBACKI H M, BRAGG M B.Sending aircraft icing effects by flap hinge moment measurements: AIAA-99-3149[R].Reston: AIAA, 1999. [11] 徐彦军, 林正, 孙岩, 等.基于H∞控制的飞机俯仰角控制系统设计[J].飞行力学, 2010, 28(6):24-27. http://d.old.wanfangdata.com.cn/Periodical/fxlx201006006XU Y J, LIN Z, SUN Y, et al.Design of aircraft pitching angle control system based on H∞ control[J].Flight Dynamics, 2010, 28(6):24-27(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxlx201006006 [12] BRAGG M B, PERKINS W R, SARTER N B, et al.An interdisciplinary approach to inflight aircraft icing safety: AIAA-1998-0095[R].Reston: AIAA, 1998. [13] AYKAN R, HAJIYEV C, CALISKAN F.Aircraft icing detection, identification and reconfigurable control based on Kalman filtering and neral networks: AIAA-2005-6220[R].Reston: AIAA, 2005. [14] AYKAN R, HAJIYEV C, CALISKAN F.Kalman filter and neural network-based icing identification applied to A340 aircraft dynamics[J].Aircraft Engineering and Aerospace Technology, 2005, 77(1):23-33. doi: 10.1108/00022660510576019 [15] 杜亮, 洪冠新.结冰对飞机飞行包线影响分析及控制[J].飞行力学, 2008, 26(2):9-12. http://d.old.wanfangdata.com.cn/Periodical/fxlx200802003DU L, HONG G X.Analysis and control of icing effects on aircraft flight envelope[J].Flight Dynamics, 2008, 26(2):9-12(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxlx200802003 [16] 王小龙, 徐浩军, 薛源, 等.俯仰姿态保持模式下飞机结冰边界保护方法[J].航空动力学报, 2016, 31(9):2087-2094. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609006WANG X L, XU H J, XUE Y, et al.Envelope protection method for pitch attitude holding mode under flight icing conditions[J].Journal of Aerospace Power, 2016, 31(9):2087-2094(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201609006 [17] 应思斌.飞机容冰飞行控制系统设计的理论与方法研究[D].上海: 复旦大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10246-2010194359.htmYING S B.Study on the theory and methods of aircraft icing tolerant flight control system design[D].Shanghai: Fudan University, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10246-2010194359.htm [18] 王晓燕, 熊德琨.输入-输出非线性反馈线性化方法在飞控系统中的应用[J].南方冶金学院学报, 2001, 25(4):47-51. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb200404011WANG X Y, XIONG D K.Input-output feedback linearization used in airplane control system[J].Journal of Southern Institute of Metallurgy, 2001, 25(4):47-51(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb200404011 [19] 李大东, 孙秀霞, 董文瀚, 等.基于线性化反馈的滑膜变结构重装空投纵向控制律设计[J].控制理论与应用, 2013, 30(1):54-60. http://www.cnki.com.cn/Article/CJFDTotal-KZLY201301008.htmLI D D, SUN X X, DONG W H, et al.Pitch control for flight in heavy-weight airdrop based on feedback linearization theory and variable-structure control[J].Control Theory and Applications, 2013, 30(1):54-60(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KZLY201301008.htm [20] BRAGG M B. Aerodynamics of supercooled-large-droplet ice accretions and the effect on aircraft control[C]//Proceedings of the FAA International Conference on Aircraft Inflight Icing.Washington, D.C.: FAA, 1996: 387-400. [21] DETERS R W, DIMOCK G A, SELIG M S.Icing encounter flight simulator[J].Journal of Aircraft, 2006, 43(5):1528-1537. doi: 10.2514/1.20364 [22] NELSON R C.Flight stability & automatic control[M].2nd ed.New York:McGraw-Hill Companies, 1998:153-155.