Integrated design method of six-phase fault-tolerant permanent magnet in-wheel motor based on multi-physics fields
-
摘要:
针对电动装甲车用轮毂电机工况复杂多变,发热严重的问题,通过对电机所涉及各物理场之间关系的分析,提出了一种永磁容错轮毂电机多物理场设计方法。利用该方法对一台电动装甲车用额定功率50 kW,最高转速6 000 r/min六相永磁容错轮毂电机进行了综合设计。在电机结构初步设计基础上,通过电磁-应力耦合分析,在兼顾电磁性能和转子强度的情况下对转子隔磁磁桥进行优化设计;通过电磁-温度耦合分析计算了电机内各区域温度分布,并对永磁体在极限温度下的退磁进行了校核;通过应力-温度耦合设计完成了转子与护套的最大应力计算,校核了护套厚度及过盈量。仿真结果表明,基于多物理场综合设计方法得到的电机能同时满足电磁性能、温度限制以及机械强度的要求,电机可靠性得到了提高。
Abstract:Based on the analysis of the relationships between the physical fields that the in-wheel motor is involved in, an integrated design method for fault-tolerant permanent magnet in-wheel motor is proposed, aiming at solving the problems of complex working conditions and serious heat of the in-wheel motor for electric armored vehicles. A 50 kW, 6 000 r/min six-phase fault-tolerant permanent magnet in-wheel motor is designed by the integrated method. On the basis of the preliminary design of the motor structure, the optimal design of the flux barrier is achieved by the electromagnetic-stress coupling design, taking both the electromagnetic performance and the mechanical strength into account. Meanwhile, the temperature distribution of the motor is calculated and the demagnetization of the magnets is completed by electromagnetic-thermal coupling design. Furthermore, the maximum mechanical stresses of the rotor and the sleeve are analyzed, and the thickness of sleeve and the interference fit between the rotor and the sleeve are verified by the thermal-stress coupling design. The simulation results show that the motor designed by integrated design method based on multi-physics fields can meet the requirements of electromagnetic performance, temperature limitation and mechanical strength. Therefore, the reliability of the motor is enhanced.
-
表 1 电机主要参数
Table 1. Main parameters of motor
参数 数值 额定功率/kW 50 额定转速/(r·min-1) 1000 最高转速/(r·min-1) 6000 相数 6 定子槽数/极数 12/10 定子外径/mm 450 定子内径/mm 335 转子外径/mm 327 转子内径/mm 250 铁心轴向长度/mm 150 注:永磁体材料为 SmCo24;定转子铁心材料为 20WTG1500。 表 2 电机温度
Table 2. Temperature of motor
℃ 温度 工作点1 工作点2 工作点3-单相开路 工作点3-单相短路 绕组平均温度 121.8 113.4 148.4 148.2 绕组最高温度 142.3 116.4 184.2 185.2 永磁体温度 130.6 135.3 141.6 146.6 定子平均温度 100.0 125.5 108.4 106.5 转子平均温度 128.7 131.4 139 143.2 表 3 转子材料性能参数
Table 3. Material property parameters of rotor
参数 20WTG1500 SmCo24 碳纤维 密度/(kg·m-3) 7650 8300 1560 弹性模量/GPa 190 130 210 泊松比 0.26 0.23 0.307 抗拉强度/MPa 370 35 1 750 热膨胀系数/(10-6K-1) 11.5 6.9 -0.38 表 4 转速为0 r/min,温度为80℃下电机转子各部分应力计算结果
Table 4. Stress calculation results of each part of motor rotor at speed of 0 r/min and temperature of 80℃
MPa 应力 护套最大应力(切向) 永磁体最大应力(径向) 转子最大应力(等效) 数值 293.2 -4.7 68.4 表 5 转速为6 000 r/min,温度为140℃下电机转子各部分应力计算结果
Table 5. Stress calculation results of each part of motor rotor at speed of 6 000 r/min and temperature of 140℃
MPa 应力 护套最大应力(切向) 永磁体最大应力(径向) 转子最大应力(等效) 数值 696.4 -56.3 237.3 -
[1] 孙逢春, 张承宁.装甲车辆混合动力电传动技术[M].2版.北京:国防工业出版社, 2016:1-28.SUN F C, ZHANG C N. Technologies for the hybrid electric drive system of armored vehicles[M].2nd ed.Beijing:National Defense Industry Publishing House, 2016:1-28(in Chinese). [2] 张运银, 马晓军, 刘春光, 等.轮毂电机驱动装甲车辆行驶稳定性控制仿真[J].火炮发射与控制学报, 2016, 37(1):59-64. doi: 10.3969/j.issn.1673-6524.2016.01.013ZHANG Y Y, MA X J, LIU C G, et al.Stability control simulation of in-wheel-motor drive armored vehicle[J].Journal of Gun Launch & Control, 2016, 37(1):59-64(in Chinese). doi: 10.3969/j.issn.1673-6524.2016.01.013 [3] XING X, SHI C, QIU J.Design and operation simulation of a direct-drive in-wheel motor for EV[C]//Vehicle Power and Propulsion Conference.Piscataway, NJ: IEEE Press, 2016: 1-5. [4] 贾珍珍.电动汽车用轮毂电机温度场的分析与计算[D].天津: 天津大学, 2012: 1-3. http://cdmd.cnki.com.cn/Article/CDMD-10056-1013039997.htmJIA Z Z.Thermal analysis and calculation of in-wheel motor for electric vehicle[D].Tianjin: Tianjin University, 2012: 1-3(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1013039997.htm [5] YI W, DAN M I, STATON D.Ultrafast steady-state multiphysics model for PM and synchronous reluctance machines[J].IEEE Transactions on Industry Applications, 2015, 51(5):3639-3646. doi: 10.1109/TIA.2015.2420623 [6] AKIKI P, HAGE-HASSAN M, BENSETTI M, et al.Multiphysics design of a V-shape IPM motor[J].IEEE Transactions on Energy Conversion, 2018, 33(3):1141-1153. doi: 10.1109/TEC.2018.2803072 [7] PRIETO D, DESSANTE P, VANNIER J C, et al.Analytical model for a saturated permanent magnet assisted synchronous reluctance motor[C]//International Conference on Electrical Machines.Piscataway, NJ: IEEE Press, 2014: 72-78. [8] 周文.三相模块化容错永磁电机研究[D].哈尔滨: 哈尔滨工业大学, 2017: 56-65. http://cdmd.cnki.com.cn/Article/CDMD-10213-1017864051.htmZHOU W.Research on 3-phase modular fault-tolerant permanent-magnet motor[D].Harbin: Harbin Institute of Technology, 2017: 56-65(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1017864051.htm [9] 高鹏.电动汽车用永磁轮毂电机的设计研究[D].天津: 天津大学, 2015: 78-104. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016110107.htmGAO P.Design and research of permanent magnet in-wheel motor for electric static structural(ABAQUS) vehicle[D].Tianjin: Tianjin University, 2015: 78-104(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1016110107.htm [10] 尹青华.永磁同步电动机电磁-机械应力耦合场的研究[D].北京: 华北电力大学, 2015: 15-38. http://cdmd.cnki.com.cn/Article/CDMD-10079-1015642180.htmYIN Q H.Study of the coupled electromagnetic-mechanical stress field of permanent magnet synchronous motor[D].Beijing: North China Electric Power University, 2015: 15-38(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10079-1015642180.htm [11] 李丹.计及旋转状态的全空冷水轮发电机多物理场耦合计算与分析[D].北京: 北京交通大学, 2017: 11-38. http://cdmd.cnki.com.cn/Article/CDMD-10004-1017053703.htmLI D.Coupled calculation and analyis of multi-physical field of a fully air-cooled hydro-fenerator considering rotational condition[D].Beijing: Beijing Jiaotong University, 2017: 11-38(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10004-1017053703.htm [12] 王光辉, 田德文, 刘华源.车用轮毂电机多物理场耦合分析[J].车辆与动力技术, 2016(3):27-32. http://d.old.wanfangdata.com.cn/Periodical/bgxb-tkzjc201603006WANG G H, TIAN D W, LIU H Y.Multi-physics coupling analysis of in-wheel motor[J].Vehicle & Power Technology, 2016(3):27-32(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bgxb-tkzjc201603006 [13] 张凤阁, 杜光辉, 王天煜, 等.1.12 MW高速永磁电机多物理场综合设计[J].电工技术学报, 2015, 30(12):171-180. doi: 10.3969/j.issn.1000-6753.2015.12.021ZHANG F G, DU G H, WANG T Y, et al.Integrated design of 1.12 MW high speed PM machine based on multi-physics fields[J].Transactions of China Electrotechnical Society, 2015, 30(12):171-180(in Chinese). doi: 10.3969/j.issn.1000-6753.2015.12.021 [14] 李冠男.船用感应电动机多物理场计算及分析[D].哈尔滨: 哈尔滨理工大学, 2014: 5-45. http://cdmd.cnki.com.cn/Article/CDMD-10214-1014179545.htmLI G N.Multi-physics field calculation and analysis of the marine induction motor[D].Harbin: Harbin University of Science and Technology, 2014: 5-45(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10214-1014179545.htm [15] 刘飞.船用发电机多物理场耦合数值分析[D].镇江: 江苏科技大学, 2013: 7-51. http://cdmd.cnki.com.cn/Article/CDMD-10289-1014034446.htmLIU F.Coupled numerical analysis of multiple physical field of marine generator[D].Zhenjiang: Jiangsu University of Science and Technology, 2013: 7-51(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10289-1014034446.htm [16] FELIPPA C A, PARK K C, FARHAT C.Partitioned analysis of coupled mechanical systems[J].Computer Methods in Applied Mechanics & Engineering, 2001,190(24):3247-3270. [17] 宋少云.多场耦合问题的分类及其应用研究[J].武汉轻工大学学报, 2008, 27(3):46-49. doi: 10.3969/j.issn.1009-4881.2008.03.012SONG S Y.Modeling of multiphysics problem and research of coupling relation[J].Journal of Wuhan Polytechnic University, 2008, 27(3):46-49(in Chinese). doi: 10.3969/j.issn.1009-4881.2008.03.012 [18] XU J, GUO H, YU K, et al.Design and analysis of a novel fault tolerant permanent magnet synchronous motor for aircraft application[C]//International Conference on Electrical Machines and Systems.Piscataway, NJ: IEEE Press, 2014: 2790-2795. [19] GIERAS J F.Design of permanent magnet brushless motors for high speed applications[C]//International Conference on Electrical Machines and Systems.Piscataway, NJ: IEEE Press, 2015: 1-16. [20] YI L, PEI Y, LIANG P, et al.Analysis of the rotor mechanical strength of interior permanent magnet synchronous in-wheel motor with high speed and large torque[C]//IEEE Conference and Expo Transportation Electrification Asia-Pacific.Piscataway, NJ: IEEE Press, 2014: 1-5. [21] 江善林.高速永磁同步电机的损耗分析与温度场计算[D].哈尔滨: 哈尔滨工业大学, 2010: 4-11. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278781.htmJIANG S L.High-speed permanent magnet synchronous motor loss analysis and temperature field calculation[D].Harbin: Harbin Institute of Technology, 2010: 4-11(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278781.htm [22] JANNOT X, VANNIER J C, MARCHAND C, et al.Multiphysic modeling of a high-speed interior permanent-magnet synchronous machine for a multiobjective optimal design[J].IEEE Transactions on Energy Conversion, 2011, 26(2):457-467. doi: 10.1109/TEC.2010.2090156 [23] 张凤阁, 杜光辉, 王天煜, 等.高速永磁电机转子不同保护措施的强度分析[J].中国电机工程学报, 2013, 33(S1):195-202. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb2013z1031ZHANG F G, DU G H, WANG T Y, et al.Rotor strength analysis of high-speed permanent magnet under different protection measures[J].Proceedings of the CSEE, 2013, 33(S1):195-202(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb2013z1031