留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六相永磁容错轮毂电机多物理场综合设计方法

郭嗣 郭宏 徐金全

郭嗣, 郭宏, 徐金全等 . 六相永磁容错轮毂电机多物理场综合设计方法[J]. 北京航空航天大学学报, 2019, 45(3): 520-528. doi: 10.13700/j.bh.1001-5965.2018.0360
引用本文: 郭嗣, 郭宏, 徐金全等 . 六相永磁容错轮毂电机多物理场综合设计方法[J]. 北京航空航天大学学报, 2019, 45(3): 520-528. doi: 10.13700/j.bh.1001-5965.2018.0360
GUO Si, GUO Hong, XU Jinquanet al. Integrated design method of six-phase fault-tolerant permanent magnet in-wheel motor based on multi-physics fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 520-528. doi: 10.13700/j.bh.1001-5965.2018.0360(in Chinese)
Citation: GUO Si, GUO Hong, XU Jinquanet al. Integrated design method of six-phase fault-tolerant permanent magnet in-wheel motor based on multi-physics fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 520-528. doi: 10.13700/j.bh.1001-5965.2018.0360(in Chinese)

六相永磁容错轮毂电机多物理场综合设计方法

doi: 10.13700/j.bh.1001-5965.2018.0360
基金项目: 

国家自然科学基金 51707004

航空科学基金 2016ZC51025

中央高校基本科研业务费专项资金 YWF18BJY166

详细信息
    作者简介:

    郭嗣  男, 博士研究生。主要研究方向:永磁容错电机设计与驱动控制

    郭宏  男, 博士, 教授, 博士生导师。主要研究方向:机载电气系统设计、特种电机设计及其驱动控制

    徐金全  男, 博士, 讲师。主要研究方向:高可靠电机设计及其驱动控制

    通讯作者:

    徐金全, E-mail:xujinquan@buaa.edu.cn

  • 中图分类号: TM351

Integrated design method of six-phase fault-tolerant permanent magnet in-wheel motor based on multi-physics fields

Funds: 

National Natural Science Foundation of China 51707004

Aeronautical Science Foundation of China 2016ZC51025

the Fundamental Research Funds for the Central Universities YWF18BJY166

More Information
  • 摘要:

    针对电动装甲车用轮毂电机工况复杂多变,发热严重的问题,通过对电机所涉及各物理场之间关系的分析,提出了一种永磁容错轮毂电机多物理场设计方法。利用该方法对一台电动装甲车用额定功率50 kW,最高转速6 000 r/min六相永磁容错轮毂电机进行了综合设计。在电机结构初步设计基础上,通过电磁-应力耦合分析,在兼顾电磁性能和转子强度的情况下对转子隔磁磁桥进行优化设计;通过电磁-温度耦合分析计算了电机内各区域温度分布,并对永磁体在极限温度下的退磁进行了校核;通过应力-温度耦合设计完成了转子与护套的最大应力计算,校核了护套厚度及过盈量。仿真结果表明,基于多物理场综合设计方法得到的电机能同时满足电磁性能、温度限制以及机械强度的要求,电机可靠性得到了提高。

     

  • 图 1  永磁容错轮毂电机内部各物理场之间的耦合关系

    Figure 1.  Coupling relationship between physical fields within fault-tolerant permanent magnet in-wheel motor

    图 2  多物理场综合设计方法流程

    Figure 2.  Procedure of integrated design method based on multi-physics fields

    图 3  六相永磁容错轮毂电机有限元模型

    Figure 3.  Finite element model of six-phase fault-tolerant permanent magnet in-wheel motor

    图 4  一对极下转子结构模型

    Figure 4.  Rotor structure model under a pair of poles

    图 5  转子最大机械应力及电机空载漏磁系数与隔磁磁桥尺寸之间的关系曲线

    Figure 5.  Maximum rotor mechanical stress and leakage coefficient under different sizes of flux barrier

    图 6  6 000 r/min工作点电机输出转矩与转速曲线

    Figure 6.  Curves of output torque and speed of motor at 6 000 r/min

    图 7  电机自感与互感曲线

    Figure 7.  Curves of self and mutual inductances of motor

    图 8  电机短路电流

    Figure 8.  Short-circuit current of motor

    图 9  不同工况下电机损耗有限元计算结果

    Figure 9.  FEA-calculated losses of motor under different operation conditions

    图 10  电机温度分布

    Figure 10.  Temperature distribution of motor

    图 11  短路故障永磁体磁密分布云图

    Figure 11.  Magnetic flux density distribution contour of permanent magnets under short-circuit failure

    图 12  转速为0 r/min,温度为80℃下电机转子等效应力分布云图

    Figure 12.  Equivalent stress distribution contour of motor rotor at speed of 0 r/min and temperature of 80℃

    图 13  转速为6 000 r/min,温度为140℃下电机转子热应力分布云图

    Figure 13.  Thermal stress distribution contour of motor rotor at speed of 6 000 r/min and temperature of 140℃

    表  1  电机主要参数

    Table  1.   Main parameters of motor

    参数 数值
    额定功率/kW 50
    额定转速/(r·min-1) 1000
    最高转速/(r·min-1) 6000
    相数 6
    定子槽数/极数 12/10
    定子外径/mm 450
    定子内径/mm 335
    转子外径/mm 327
    转子内径/mm 250
    铁心轴向长度/mm 150
    注:永磁体材料为 SmCo24;定转子铁心材料为 20WTG1500。
    下载: 导出CSV

    表  2  电机温度

    Table  2.   Temperature of motor

    温度 工作点1 工作点2 工作点3-单相开路 工作点3-单相短路
    绕组平均温度 121.8 113.4 148.4 148.2
    绕组最高温度 142.3 116.4 184.2 185.2
    永磁体温度 130.6 135.3 141.6 146.6
    定子平均温度 100.0 125.5 108.4 106.5
    转子平均温度 128.7 131.4 139 143.2
    下载: 导出CSV

    表  3  转子材料性能参数

    Table  3.   Material property parameters of rotor

    参数 20WTG1500 SmCo24 碳纤维
    密度/(kg·m-3) 7650 8300 1560
    弹性模量/GPa 190 130 210
    泊松比 0.26 0.23 0.307
    抗拉强度/MPa 370 35 1 750
    热膨胀系数/(10-6K-1) 11.5 6.9 -0.38
    下载: 导出CSV

    表  4  转速为0 r/min,温度为80℃下电机转子各部分应力计算结果

    Table  4.   Stress calculation results of each part of motor rotor at speed of 0 r/min and temperature of 80℃

    MPa
    应力 护套最大应力(切向) 永磁体最大应力(径向) 转子最大应力(等效)
    数值 293.2 -4.7 68.4
    下载: 导出CSV

    表  5  转速为6 000 r/min,温度为140℃下电机转子各部分应力计算结果

    Table  5.   Stress calculation results of each part of motor rotor at speed of 6 000 r/min and temperature of 140℃

    MPa
    应力 护套最大应力(切向) 永磁体最大应力(径向) 转子最大应力(等效)
    数值 696.4 -56.3 237.3
    下载: 导出CSV
  • [1] 孙逢春, 张承宁.装甲车辆混合动力电传动技术[M].2版.北京:国防工业出版社, 2016:1-28.

    SUN F C, ZHANG C N. Technologies for the hybrid electric drive system of armored vehicles[M].2nd ed.Beijing:National Defense Industry Publishing House, 2016:1-28(in Chinese).
    [2] 张运银, 马晓军, 刘春光, 等.轮毂电机驱动装甲车辆行驶稳定性控制仿真[J].火炮发射与控制学报, 2016, 37(1):59-64. doi: 10.3969/j.issn.1673-6524.2016.01.013

    ZHANG Y Y, MA X J, LIU C G, et al.Stability control simulation of in-wheel-motor drive armored vehicle[J].Journal of Gun Launch & Control, 2016, 37(1):59-64(in Chinese). doi: 10.3969/j.issn.1673-6524.2016.01.013
    [3] XING X, SHI C, QIU J.Design and operation simulation of a direct-drive in-wheel motor for EV[C]//Vehicle Power and Propulsion Conference.Piscataway, NJ: IEEE Press, 2016: 1-5.
    [4] 贾珍珍.电动汽车用轮毂电机温度场的分析与计算[D].天津: 天津大学, 2012: 1-3. http://cdmd.cnki.com.cn/Article/CDMD-10056-1013039997.htm

    JIA Z Z.Thermal analysis and calculation of in-wheel motor for electric vehicle[D].Tianjin: Tianjin University, 2012: 1-3(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1013039997.htm
    [5] YI W, DAN M I, STATON D.Ultrafast steady-state multiphysics model for PM and synchronous reluctance machines[J].IEEE Transactions on Industry Applications, 2015, 51(5):3639-3646. doi: 10.1109/TIA.2015.2420623
    [6] AKIKI P, HAGE-HASSAN M, BENSETTI M, et al.Multiphysics design of a V-shape IPM motor[J].IEEE Transactions on Energy Conversion, 2018, 33(3):1141-1153. doi: 10.1109/TEC.2018.2803072
    [7] PRIETO D, DESSANTE P, VANNIER J C, et al.Analytical model for a saturated permanent magnet assisted synchronous reluctance motor[C]//International Conference on Electrical Machines.Piscataway, NJ: IEEE Press, 2014: 72-78.
    [8] 周文.三相模块化容错永磁电机研究[D].哈尔滨: 哈尔滨工业大学, 2017: 56-65. http://cdmd.cnki.com.cn/Article/CDMD-10213-1017864051.htm

    ZHOU W.Research on 3-phase modular fault-tolerant permanent-magnet motor[D].Harbin: Harbin Institute of Technology, 2017: 56-65(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1017864051.htm
    [9] 高鹏.电动汽车用永磁轮毂电机的设计研究[D].天津: 天津大学, 2015: 78-104. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016110107.htm

    GAO P.Design and research of permanent magnet in-wheel motor for electric static structural(ABAQUS) vehicle[D].Tianjin: Tianjin University, 2015: 78-104(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10056-1016110107.htm
    [10] 尹青华.永磁同步电动机电磁-机械应力耦合场的研究[D].北京: 华北电力大学, 2015: 15-38. http://cdmd.cnki.com.cn/Article/CDMD-10079-1015642180.htm

    YIN Q H.Study of the coupled electromagnetic-mechanical stress field of permanent magnet synchronous motor[D].Beijing: North China Electric Power University, 2015: 15-38(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10079-1015642180.htm
    [11] 李丹.计及旋转状态的全空冷水轮发电机多物理场耦合计算与分析[D].北京: 北京交通大学, 2017: 11-38. http://cdmd.cnki.com.cn/Article/CDMD-10004-1017053703.htm

    LI D.Coupled calculation and analyis of multi-physical field of a fully air-cooled hydro-fenerator considering rotational condition[D].Beijing: Beijing Jiaotong University, 2017: 11-38(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10004-1017053703.htm
    [12] 王光辉, 田德文, 刘华源.车用轮毂电机多物理场耦合分析[J].车辆与动力技术, 2016(3):27-32. http://d.old.wanfangdata.com.cn/Periodical/bgxb-tkzjc201603006

    WANG G H, TIAN D W, LIU H Y.Multi-physics coupling analysis of in-wheel motor[J].Vehicle & Power Technology, 2016(3):27-32(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bgxb-tkzjc201603006
    [13] 张凤阁, 杜光辉, 王天煜, 等.1.12 MW高速永磁电机多物理场综合设计[J].电工技术学报, 2015, 30(12):171-180. doi: 10.3969/j.issn.1000-6753.2015.12.021

    ZHANG F G, DU G H, WANG T Y, et al.Integrated design of 1.12 MW high speed PM machine based on multi-physics fields[J].Transactions of China Electrotechnical Society, 2015, 30(12):171-180(in Chinese). doi: 10.3969/j.issn.1000-6753.2015.12.021
    [14] 李冠男.船用感应电动机多物理场计算及分析[D].哈尔滨: 哈尔滨理工大学, 2014: 5-45. http://cdmd.cnki.com.cn/Article/CDMD-10214-1014179545.htm

    LI G N.Multi-physics field calculation and analysis of the marine induction motor[D].Harbin: Harbin University of Science and Technology, 2014: 5-45(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10214-1014179545.htm
    [15] 刘飞.船用发电机多物理场耦合数值分析[D].镇江: 江苏科技大学, 2013: 7-51. http://cdmd.cnki.com.cn/Article/CDMD-10289-1014034446.htm

    LIU F.Coupled numerical analysis of multiple physical field of marine generator[D].Zhenjiang: Jiangsu University of Science and Technology, 2013: 7-51(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10289-1014034446.htm
    [16] FELIPPA C A, PARK K C, FARHAT C.Partitioned analysis of coupled mechanical systems[J].Computer Methods in Applied Mechanics & Engineering, 2001,190(24):3247-3270.
    [17] 宋少云.多场耦合问题的分类及其应用研究[J].武汉轻工大学学报, 2008, 27(3):46-49. doi: 10.3969/j.issn.1009-4881.2008.03.012

    SONG S Y.Modeling of multiphysics problem and research of coupling relation[J].Journal of Wuhan Polytechnic University, 2008, 27(3):46-49(in Chinese). doi: 10.3969/j.issn.1009-4881.2008.03.012
    [18] XU J, GUO H, YU K, et al.Design and analysis of a novel fault tolerant permanent magnet synchronous motor for aircraft application[C]//International Conference on Electrical Machines and Systems.Piscataway, NJ: IEEE Press, 2014: 2790-2795.
    [19] GIERAS J F.Design of permanent magnet brushless motors for high speed applications[C]//International Conference on Electrical Machines and Systems.Piscataway, NJ: IEEE Press, 2015: 1-16.
    [20] YI L, PEI Y, LIANG P, et al.Analysis of the rotor mechanical strength of interior permanent magnet synchronous in-wheel motor with high speed and large torque[C]//IEEE Conference and Expo Transportation Electrification Asia-Pacific.Piscataway, NJ: IEEE Press, 2014: 1-5.
    [21] 江善林.高速永磁同步电机的损耗分析与温度场计算[D].哈尔滨: 哈尔滨工业大学, 2010: 4-11. http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278781.htm

    JIANG S L.High-speed permanent magnet synchronous motor loss analysis and temperature field calculation[D].Harbin: Harbin Institute of Technology, 2010: 4-11(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1011278781.htm
    [22] JANNOT X, VANNIER J C, MARCHAND C, et al.Multiphysic modeling of a high-speed interior permanent-magnet synchronous machine for a multiobjective optimal design[J].IEEE Transactions on Energy Conversion, 2011, 26(2):457-467. doi: 10.1109/TEC.2010.2090156
    [23] 张凤阁, 杜光辉, 王天煜, 等.高速永磁电机转子不同保护措施的强度分析[J].中国电机工程学报, 2013, 33(S1):195-202. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb2013z1031

    ZHANG F G, DU G H, WANG T Y, et al.Rotor strength analysis of high-speed permanent magnet under different protection measures[J].Proceedings of the CSEE, 2013, 33(S1):195-202(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb2013z1031
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  739
  • HTML全文浏览量:  107
  • PDF下载量:  492
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-14
  • 录用日期:  2018-09-03
  • 网络出版日期:  2019-03-20

目录

    /

    返回文章
    返回
    常见问答