Multi-mode computational optical imaging technology based on software-defined micro-nano satellite
-
摘要:
为实现有效载荷具备上载软件在轨定义多功能、软件可控多功能、参数可重构的软件定义微纳卫星需求,需要突破传统卫星平台和传统光学相机的设计局限,开展基于微纳卫星的软件定义下新型计算光学成像载荷技术研究。充分考虑有效载荷的软件和硬件两者之间联合设计可能存在的发展空间,分析了亚像元信息、卫星平台参数、光学系统参数、探测器参数、噪声、大气对图像数据处理,特别是超分辨率重建的影响。根据各个影响因素的物理机制分别建立物理模型和误差模型,作为重建方法的先验信息,将这些有利于超分辨技术的先验信息约束应用于相机设计过程,使得相机获取的图像可以很好地匹配超分辨方法。该方法可以提升视觉分辨率和实质分辨率,同时保持对噪声的抑制能力,并有可能降低传统相机的结构尺寸和研制难度。研制实现集超分辨成像、动态范围增强成像、视频成像等软件智能可控的多种成像处理模式于一体的通用型计算光学成像相机,将对航天产业提供更大的灵活性和增值空间,为未来智能卫星航天技术研究与快速创新提供一种可行的方案。
Abstract:In order to accomplish the software-defined micro-nano satellite demands, which includes that its payload functions and parameters could be reconstructive and controllable by uploading software as needs, we have to break through the design limitations between traditional satellite platform and ordinary optical camera, and one new type of optical imaging camera technology is developed based on software-defined micro-nano satellite here. We gave full consideration to the possible development of joint design space between the software and the hardware of the payload. Then we analyzed the influence of sub-pixel information, satellite platform parameters, optical system parameters, detector parameters, noise and atmosphere on image data processing, especially the super-resolution reconstruction. We established the physical model and the error model according to the physical mechanism of each factor, as priori information of the reconstruction method.We applied these prior information constraints in favor of super-resolution to the design of the camera, enabling the images captured by the camera to match the super-resolution method very well. This method can simultaneously improve visual resolution and substantial resolution while maintaining the ability of suppressing noise, and may reduce the size and development difficulty of traditional cameras. We have developed a general purpose computing optical imaging camera, which integrates the super resolution imaging, dynamic range enhanced imaging, video imaging and other multi intelligent controllable imaging modes. Finally we have completed the related camera integration, testing and experiment.
-
-
[1] HARRIS J L.Diffraction and resolving power[J].Journal of the Optical Society of America, 1964, 54(7):931-936. doi: 10.1364/JOSA.54.000931 [2] GOODMAN J W.Introduction to Fourier optics[M].New York:McGraw-Hill, 1968. [3] TSAI R Y, HUANG A K.Multiframeimage restoration and registration[J].Advances in Computer Vision and Image Processing, 1984, 1(2):317-339. [4] VANDEWALLE P, SBAIZ L, VANDEWALLE J, et al.Super-resolution from unregistered and totally aliased signals using subspace methods[J].IEEE Transactions on Signal Processing, 2007, 55(7):3687-3703. doi: 10.1109/TSP.2007.894257 [5] TAN Z, XIANG L B, LV Q B, et al.A sequence images super-resolution enhancement approach based on frequency-domain[J].Acta Optica Sinica, 2017, 37(7):710001-1. doi: 10.3788/AOS [6] IRANI M, PELEG S.Motion analysis for image enhancement:Resolution, occlusion and transparency[J].Journal of Visual Communications and Image Representation, 1993, 4(4):324-335. doi: 10.1006/jvci.1993.1030 [7] YANG X F, LI J Z, LI D D.A super-resolution method based on hybrid of generalized PMAP and POCS[C]//2010 the 3rd IEEE International Conference on Computer Science and Information Technology.Piscataway, NJ: IEEE Press, 2010: 355-358. [8] CHEN C C.A multi-frame super-resolution algorithm using POCS and wavelet[D].Montreal: Concordia University, 2010. [9] FARSIU S, ROBINSON D, ELAD M, et al.Fast and robust multi-frame super resolution[J].IEEE Transactions on Image Processing, 2004, 13(10):1327-1344. doi: 10.1109/TIP.2004.834669 [10] ŠROUBEK F, FLUSSER J.A unified approach to super-resolution and multichannel blind deconvolution[J].IEEE Transactions on Image Process, 2007, 16(9):2322-2332. doi: 10.1109/TIP.2007.903256 [11] SHEN H, ZHANG L, HUANG B, et al.A MAP approach for joint motion estimation, segmentation, and super resolution[J].IEEE Transactions on Image Process, 2007, 16(2):479-490. doi: 10.1109/TIP.2006.888334 [12] WOODS M, KATSAGGELOS A.A Bayesian multi-frame image super-resolution algorithm using the Gaussian information filter[C]//IEEE International Conference on Acoustics, Speech and Signal Processing.Piscataway, NJ: IEEE Press, 2017: 1368-1372. [13] NITTA K, SHOGENJI R, MIYATAKE S, et al.Image recons-truction for thin observation module by bound optics by using the iterative back projection method[J].Applied Optics, 2006, 45(13):2893-2900. doi: 10.1364/AO.45.002893 [14] VILLENA S, VEGA M, MOLINA R, et al.Bayesian super-resolution image reconstruction using an l1 prior[C]//Proceedings of 6th International Symposium on Image and Signal Processing and Analysis.Piscataway, NJ: IEEE Press, 2009: 152-157. [15] BABACAN S, MOLINA R, KATSAGGELOS A.VariationalBayesian super resolution[J].IEEE Transactions on Image Processing, 2011, 20(4):984-999. doi: 10.1109/TIP.2010.2080278