留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带落角约束的新型二阶滑模三维制导律

史绍琨 赵久奋 崇阳 杨奇松 尤浩

史绍琨, 赵久奋, 崇阳, 等 . 带落角约束的新型二阶滑模三维制导律[J]. 北京航空航天大学学报, 2019, 45(3): 614-623. doi: 10.13700/j.bh.1001-5965.2018.0387
引用本文: 史绍琨, 赵久奋, 崇阳, 等 . 带落角约束的新型二阶滑模三维制导律[J]. 北京航空航天大学学报, 2019, 45(3): 614-623. doi: 10.13700/j.bh.1001-5965.2018.0387
SHI Shaokun, ZHAO Jiufen, CHONG Yang, et al. Novel second-order sliding mode control based 3D guidance law with impact angle constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 614-623. doi: 10.13700/j.bh.1001-5965.2018.0387(in Chinese)
Citation: SHI Shaokun, ZHAO Jiufen, CHONG Yang, et al. Novel second-order sliding mode control based 3D guidance law with impact angle constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 614-623. doi: 10.13700/j.bh.1001-5965.2018.0387(in Chinese)

带落角约束的新型二阶滑模三维制导律

doi: 10.13700/j.bh.1001-5965.2018.0387
详细信息
    作者简介:

    史绍琨  男, 硕士研究生。主要研究方向:飞行器总体、结构分析与飞行力学

    赵久奋  男, 博士, 硕士生导师。主要研究方向:飞行器总体、结构分析与飞行力学

    通讯作者:

    赵久奋, E-mail:xiangcdx1994@163.com

  • 中图分类号: V488.13

Novel second-order sliding mode control based 3D guidance law with impact angle constraints

More Information
  • 摘要:

    针对导弹在三维空间中攻击地面机动目标问题,提出了一种带落角约束的三维有限时间制导律。为提高收敛速度和抑制抖振现象,基于非齐异快速终端滑模面和二阶滑模控制理论设计了含耦合项的非奇异快速终端二阶滑模三维制导律,设计过程中无需对系统模型作线性化处理并且避免了奇异问题的出现。针对目标机动信息和视线角耦合带来的总扰动,设计了非齐次干扰观测器进行估计并补偿。并对制导律的稳定性和有限时间收敛特性进行了严格的数学证明。仿真验证了本文提出制导律的有效性和优越性。

     

  • 图 1  弹目相对运动关系

    Figure 1.  Relative motion relationship between missile and target

    图 2  3枚导弹攻击目标仿真结果

    Figure 2.  Simulation results of 3 missiles attacking targets

    图 3  3种制导律仿真对比结果

    Figure 3.  Simulation result comparison of 3 guidance laws

    表  1  导弹初始参数和期望落角

    Table  1.   Initial parameters and expected impact angles of missiles

    导弹 初始坐标/km θm0/(°) φm0/(°) qεd/(°) qβd/(°)
    M1 (0, 10, 0) -25 -20 -30 -30
    M2 (2, 12, 1) -10 -30 -60 -20
    M3 (-2, 9, 3) 10 10 -70 -60
    下载: 导出CSV

    表  2  3枚导弹攻击目标主要仿真参数

    Table  2.   Main simulation parameters of 3 missiles attacking targets

    导弹 脱靶量/m 视线倾角误差/(°) 视线偏角误差/(°) 飞行时间/s
    M1 0.206 9 0.011 6 0.025 7 29.768 0
    M2 0.077 6 0.010 0 0.025 0 29.979 0
    M3 0.296 2 0.029 3 0.015 9 30.362 0
    下载: 导出CSV

    表  3  3种制导律仿真主要参数对比

    Table  3.   Main simulation parameters comparison of 3 guidance laws

    制导律 脱靶量/m 视线倾角误差/(°) 视线偏角误差/(°) 飞行时间/s
    SO-NFTSMG 0.206 9 0.011 6 0.025 7 29.768 0
    NTSMG1 0.268 1 0.023 6 0.026 1 29.706 0
    NTSMG2 0.242 3 0.011 4 0.027 3 29.923 0
    下载: 导出CSV
  • [1] 黄诘, 张友安, 刘永新.一种有撞击角和视场角约束的运动目标的偏置比例导引算法[J].宇航学报, 2016, 37(2):195-202. doi: 10.3873/j.issn.1000-1328.2016.02.009

    HUANG J, ZHANG Y A, LIU Y X.A biased proportional guidance algorithm for moving target with impact angle and field-of-view constraints[J].Journal of Astronautics, 2016, 37(2):195-202(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.02.009
    [2] ERER K S, TEKIN R.Impact time and angle control based on constrained optimal solutions[J].Journal of Guidance, Control, and Dynamics, 2016, 39(10):1-7. http://cn.bing.com/academic/profile?id=0b805cbabdd21130d057128943d29abd&encoded=0&v=paper_preview&mkt=zh-cn
    [3] TAUB I, SHIMA T.Intercept angle missile guidance under time varying acceleration bounds[J].Journal of Guidance, Control, and Dynamics, 2013, 36(3):686-699. doi: 10.2514/1.59139
    [4] LEE C H, KIM T H, TAHK M J.Interception angle control guidance using proportional navigation with error feedback[J].Journal of Guidance, Control, and Dynamics, 2013, 36(5):1556-1561. doi: 10.2514/1.58454
    [5] WANG H, LIN D, CHENG Z, et al.Optimal guidance of extended trajectory shaping[J].Chinese Journal of Aeronautics, 2014, 27(5):1259-1272. doi: 10.1016/j.cja.2014.03.022
    [6] 王晓芳, 王紫扬, 林海.一种同时具有攻击时间和攻击角度约束的协同制导律[J].弹道学报, 2017, 29(4):1-8. doi: 10.3969/j.issn.1004-499X.2017.04.001

    WANG X F, WANG Z Y, LIN H.A cooperative guidance law with constraints of impact time and impact angle[J].Journal of Ballistics, 2017, 29(4):1-8(in Chinese). doi: 10.3969/j.issn.1004-499X.2017.04.001
    [7] 张小件, 刘明雍, 李洋.基于反演滑模和扩张观测器的带角度约束制导律设计[J].系统工程与电子技术, 2017, 39(6):1311-1316. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706020

    ZHANG X J, LIU M Y, LI Y.Backstepping sliding mode control and extended state observer based guidance law design with angles[J].Systems Engineering and Electronics, 2017, 39(6):1311-1316(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201706020
    [8] WANG X, HONG Y.Finite-time consensus for multi-agent networks with second-order agent dynamics[C]//Proceedings of the IFAC World Congress.Laxenburg: IFCA, 2018: 15185-15190. https://www.sciencedirect.com/science/article/pii/S1474667016414333
    [9] 熊少锋, 王卫红, 王森.带攻击角度约束的非奇异快速终端滑模制导律[J].控制理论与应用, 2014, 31(3):269-278. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201403001

    XIONG S F, WANG W H, WANG S.Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J].Control Theory & Applications, 2014, 31(3):269-278(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201403001
    [10] 赵斌, 周军, 卢晓东, 等.考虑终端角度约束的自适应积分滑模制导律[J].控制与决策, 2017, 32(11):1966-1972. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201711006

    ZHAO B, ZHOU J, LU X D, et al.Adaptive integral sliding mode guidance law considering impact angel constraint[J].Control and Decision, 2017, 32(11):1966-1972(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzyjc201711006
    [11] 赵曜, 李璞, 刘娟, 等.带碰撞角约束的三维有限时间滑模制导律[J].北京航空航天大学学报, 2018, 44(2):273-279. http://bhxb.buaa.edu.cn/CN/abstract/abstract14754.shtml

    ZHAO Y, LI P, LIU J, et al.Finite-time sliding mode control based 3D guidance law with impact angle constraints[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):273-279(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14754.shtml
    [12] 司玉洁, 宋申民.拦截高超声速飞行器的三维有限时间制导律设计[J].中国惯性技术学报, 2017, 25(3):405-414. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201703023

    SI Y J, SONG S M.Design of three-dimensional finite-time guidance law for intercepting hypersonic vehicle[J].Journal of Chinese Inertial Technology, 2017, 25(3):405-414(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201703023
    [13] ARIE L.Principles of 2-sliding mode design[J].Automatica, 2007, 43(4):576-586. doi: 10.1016/j.automatica.2006.10.008
    [14] SUN L H, WANG W H, YI R, et al.A noval guidance law using fast terminal sliding mode control with impact angle constraints[J].ISA Transactions, 2016, 64:12-23. doi: 10.1016/j.isatra.2016.05.004
    [15] LI P, PENG X F, MA J J, et al.Non-homogeneous disturbance observer-based second order sliding mode control for a tailless aircraft[C]//Proceedings of Chinese Automation Congress.Piscataway, NJ: IEEE Press, 2013: 120-125.
    [16] BHAT S P, BERNSTEIN D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal on Control and Optimization, 2000, 38(3):751-766. doi: 10.1137/S0363012997321358
    [17] 周慧波.基于有限时间和滑模理论的导引律及多导弹协同制导研究[D].哈尔滨: 哈尔滨工业大学, 2015: 41-44. http://cdmd.cnki.com.cn/Article/CDMD-10213-1015957301.htm

    ZHOU H B.Study on guidance law and cooperative guidance for multi-missiles based on finite-time and sliding mode theory[D].Harbin: Harbin Institute of Technology, 2015: 41-44(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1015957301.htm
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  802
  • HTML全文浏览量:  100
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-27
  • 录用日期:  2018-07-27
  • 网络出版日期:  2019-03-20

目录

    /

    返回文章
    返回
    常见问答