留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激发跃迁速率对热力学非平衡氮气紫外辐射的影响

吴杰 余西龙 段然 朱希娟 李霞 马静

吴杰, 余西龙, 段然, 等 . 激发跃迁速率对热力学非平衡氮气紫外辐射的影响[J]. 北京航空航天大学学报, 2019, 45(3): 472-477. doi: 10.13700/j.bh.1001-5965.2018.0392
引用本文: 吴杰, 余西龙, 段然, 等 . 激发跃迁速率对热力学非平衡氮气紫外辐射的影响[J]. 北京航空航天大学学报, 2019, 45(3): 472-477. doi: 10.13700/j.bh.1001-5965.2018.0392
WU Jie, YU Xilong, DUAN Ran, et al. Influence of excitation and transition rates on ultraviolet radiation of thermal nonequilibrium nitrogen[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 472-477. doi: 10.13700/j.bh.1001-5965.2018.0392(in Chinese)
Citation: WU Jie, YU Xilong, DUAN Ran, et al. Influence of excitation and transition rates on ultraviolet radiation of thermal nonequilibrium nitrogen[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 472-477. doi: 10.13700/j.bh.1001-5965.2018.0392(in Chinese)

激发跃迁速率对热力学非平衡氮气紫外辐射的影响

doi: 10.13700/j.bh.1001-5965.2018.0392
基金项目: 

国家自然科学基金 11872368

详细信息
    作者简介:

    吴杰  男, 博士, 高级工程师。主要研究方向:高温气体辐射光谱建模

    余西龙  男, 博士, 教授, 博士生导师。主要研究方向:激光光谱诊断技术、高焓非平衡流动

    段然  男, 博士, 工程师。主要研究方向:红外辐射数值分析

    通讯作者:

    余西龙, E-mail:xlyu@imech.ac.cn

  • 中图分类号: V411.7

Influence of excitation and transition rates on ultraviolet radiation of thermal nonequilibrium nitrogen

Funds: 

National Natural Science Foundation of China 11872368

More Information
  • 摘要:

    基于氮气的碰撞-辐射(CR)模型,计算了速度为6.2 km/s、初始压力为133 Pa的高超声速流动激波中N2和N2+分子电子能级的分布情况,分析了不同激发跃迁速率模型对电子能级分布及辐射光谱模拟的影响。针对流动中热力学非平衡区域和平衡区域,在300~440 nm的辐射光谱开展了逐线法的数值模拟,并与激波管实验测量光谱进行了对比。结果表明,目前的激发跃迁速率均存在偏差,综合Park模型的爱因斯坦系数和Johnston模型的碰撞激发速率可以得到与实验结果最为接近的辐射光谱。

     

  • 图 1  N2+(X-B)电子态的碰撞激发速率系数随温度的变化

    Figure 1.  Variation of electron collision excitation rate coefficient from N2+(X-B) state with temperature

    图 2  平衡区测量与计算辐射光谱

    Figure 2.  Measured and calculated radiation spectra in equilibrium area

    图 3  不同理论模型计算的非平衡区域辐射光谱与实验测量结果比较

    Figure 3.  Comparison of nonequilibrium radiation spectra calculated by different theoretical models with experimental measurements

    图 4  采用修改模型计算的非平衡区域辐射光谱与实验测量结果比较

    Figure 4.  Comparison of radiation spectra of nonequilibrium area calculated by modified model with experimental measurement results

    表  1  计算考虑电子能态

    Table  1.   Electronic states in calculation

    能态 电子态 Ee/cm-1 简并度
    N2 X1Σg+ 0 1
    A3Σu+ 49754 3
    B3Πu 59306 6
    C3Πu 88977 6
    N2+ X2Σg+ 0 2
    A2Πu 9167 4
    B2Σu+ 25461 4
    C2Σu+ 64608 4
    下载: 导出CSV

    表  2  不同理论模型计算的平衡区分子能级分布

    Table  2.   Molecular energy level distribution in equilibrium region calculated by different theoretical models

    能态 Nie/cm-3 Park模型 Johnston模型
    Ni/cm-3 Ni/Nie Ni/cm-3 Ni/Nie
    N2+(X) 1.36×1013 1.36×1013 1.00 1.36×1013 1.00
    N2+(A) 4.68×1012 4.67×1012 1.00 4.68×1012 1.00
    N2+(B) 4.03×1010 3.97×1010 0.99 2.35×1010 0.58
    N2(X) 3.24×1017 3.24×1017 1.00 3.24×1017 1.00
    N2(A) 3.64×1013 2.92×1013 0.80 3.66×1013 1.01
    N2(B) 6.32×1012 5.11×1012 0.81 6.28×1012 0.99
    N2(C) 2.55×1011 2.04×1011 0.80 2.52×1010 0.10
    下载: 导出CSV

    表  3  不同模型碰撞激发速率系数的计算结果

    Table  3.   Calculation results of collision excitation rate coefficient by different models

    cm3·s-1
    N2+反应过程 碰撞激发速率系数 N2反应过程 碰撞激发速率系数
    Park模型 Johnston模型 Park模型 Johnston模型
    N2+(X)+e⇔N2+(A)+e 2.9×10-7 1.7×10-11 N2(X)+e⇔N2(A)+e 9.1×10-13 1.4×10-12
    N2+(X)+e⇔N2+(B)+e 4.9×10-8 3.2×10-10 N2(X)+e⇔N2(B)+e 3.3×10-13 4.7×10-13
    N2+(X)+e⇔N2+(C)+e 3.6×10-9 3.2×10-11 N2(X)+e⇔N2(C)+e - 1.3×10-15
    N2+(A)+e⇔N2+(B)+e 8.8×10-7 8.1×10-11 N2(A)+e⇔N2(B)+e 2.4×10-9 9.4×10-10
    N2+(A)+e⇔N2+(C)+e 2.7×10-8 8.3×10-11 N2(A)+e⇔N2(C)+e - 1.1×10-10
    N2+(B)+e⇔N2+(C)+e 2.5×10-7 4.3×10-10 N2(B)+e⇔N2(C)+e - 6.3×10-9
    N2+(X)+e⇔N+N++e 4.2×10-12 1.6×10-13 N2(X)+e⇔N+N++e 1.2×10-16 4.1×10-15
    N2+(A)+e⇔N+N++e 1.5×10-11 1.7×10-12 N2(A)+e⇔N+N++e 3.8×10-13 1.7×10-10
    N2+(B)+e⇔N+N++e 1.1×10-10 3.2×10-12 N2(B)+e⇔N+N++e 1.6×10-12 1.8×10-11
    N2+(C)+e⇔N+N++e 3.9×10-9 1.0×10-10 N2(C)+e⇔N+N++e - 6.3×10-9
    N2+(X)+M⇔N2+(A)+M 1.1×10-12 3.0×10-12 N2(X)+M⇔N2(A)+M 5.6×10-14 2.5×10-17
    N2+(X)+M⇔N2+(B)+M 4.1×10-13 1.9×10-13 N2(X)+M⇔N2(B)+M 1.7×10-14 0
    N2+(X)+M⇔N2+(C)+M 3.2×10-14 0 N2(X)+M⇔N2(C)+M - 0
    N2+(A)+M⇔N2+(B)+M 8.1×10-13 0 N2(A)+M⇔N2(B)+M 5.8×10-12 4.5×10-12
    N2+(A)+M⇔N2+(C)+M 8.2×10-14 0 N2(A)+M⇔N2(C)+M - 0
    N2+(B)+M⇔N2+(C)+M 3.8×10-13 0 N2(B)+M⇔N2(C)+M - 1.5×10-12
    N2+(X)+M⇔N+N++M 8.8×10-14 6.9×10-18 N2(X)+M⇔N+N++M 4.6×10-15 0
    N2+(A)+M⇔N+N++M 3.6×10-13 2.1×10-16 N2(A)+M⇔N+N++M 3.2×10-11 0
    N2+(B)+M⇔N+N++M 4.4×10-12 5.3×10-16 N2(B)+M⇔N+N++M 1.7×10-10 0
    N2+(C)+M⇔N+N++M 2.5×10-10 1.4×10-14 N2(C)+M⇔N+N++M - 0
    下载: 导出CSV

    表  4  不同理论模型计算的非平衡区分子电子能级数密度

    Table  4.   Molecular electron energy level density in nonequilibrium region calculated by different theoretical models

    能态 Nie/cm-3 Park模型 Johnston模型
    Ni/cm-3 Ni/Nie Ni/cm-3 Ni/Nie
    N2+(X) 1.22×1014 1.12×1014 0.92 1.23×1014 1.01
    N2+(A) 6.31×1013 6.31×1013 1.00 6.23×1013 0.99
    N2+(B) 1.13×1012 1.13×1012 1.00 3.96×1011 0.35
    N2(X) 4.33×1017 4.44×1017 1.03 4.33×1017 1.00
    N2(A) 4.56×1014 4.43×1013 0.10 3.99×1014 0.88
    N2(B) 1.21×1014 3.64×1012 0.03 1.05×1014 0.87
    N2(C) 7.47×1012 5.05×1010 0.01 1.37×1012 0.18
    下载: 导出CSV

    表  5  修改后的速率模型计算的分子电子能级数密度

    Table  5.   Molecular energy level density calculated by modified rate model

    能态 平衡区 非平衡区
    Nie/cm-3 Ni/cm-3 Ni/Nie Nie/cm-3 Ni/cm-3 Ni/Nie
    N2+(X) 1.36×1013 1.36×1013 1.00 1.22×1014 1.23×1014 1.01
    N2+(A) 4.68×1012 4.68×1012 1.00 6.31×1013 6.23×1013 0.99
    N2+(B) 4.03×1010 2.35×1010 0.58 1.13×1012 3.96×1011 0.35
    N2(X) 3.24×1017 3.24×1017 1.00 4.33×1017 4.33×1017 1.00
    N2(A) 3.64×1013 3.70×1013 1.02 4.56×1014 3.87×1014 0.85
    N2(B) 6.32×1012 6.36×1012 1.01 1.21×1014 1.01×1014 0.83
    N2(C) 2.55×1011 2.66×1011 1.04 7.47×1012 5.22×1012 0.70
    下载: 导出CSV
  • [1] PARK C.Review of chemical kinetic problems for future NASA missions, Ⅰ.Earth entries[J].Journal of Thermophysics and Heat Transfer, 1993, 7(3):385-398. doi: 10.2514/3.431
    [2] PARK C, HOWE J T, JAFFE R L, et al.Review of chemical-kinetic problems of future NASA missions, Ⅱ:Mars entries[J].Journal of Thermophysics and Heat Transfer, 1994, 8(1):9-23. doi: 10.2514-3.431/
    [3] ANNALORO J, BULTEL A, OMALY P.Elaboration of a collisional-rediative model for CO2-N2-Ar plasma flows: Appliction to atmospheric Martian entries[C]//42nd AIAA Thermophysics Conference.Reston: AIAA, 2011: 3954.
    [4] CRUDEN B A, PRABHU D, MARTINEZ R, et al.Absolute radiation measurement in Venus and Mars entry conditions[C]//10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference.Reston: AIAA, 2010: 092407.
    [5] LAUX C O, PIERROT L, GESSMAN R J.State-to-state modeling of a recombining nitrogen plasma experiment[J].Chemical Physics, 2012, 398(1):46-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f67635d66f6d5f05229af6ef35fc3bb0
    [6] PARK C.Calculation of nonequilibrium radiation in the flight regimes of aeroassisted orbital transfer vehicles[C]//AIAA 22nd Aerospace Sciences Meeting.Reston: AIAA, 1984: 1-13.
    [7] LEMAL A, JACOBS C M, PERRIN M Y, et al.Simulation of shock tube radiation measurements with a collisional-radiaitve model[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aeroespace Exposition.Reston: AIAA, 2013: 1-9.
    [8] LEE E S, PARK C, CHANG K S.Shock-tube determination of CN formation rate in a CO-N2 mixture[C]//45th AIAA Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 2007: 1-13.
    [9] PANESI M, MAGIN T E, BOURDON A, et al.Analysis of the FIRE Ⅱ flight experiment by means of a collisional radiative model[C]//46th AIAA Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 2008: 1-15.
    [10] SHARMA S P, GILLESPIE W.Nonequilibirum and equilibrium shock front radiation measurements[J].Journal of Thermophysics and Heat Transfer, 1991, 5(3):257-265. doi: 10.2514/3.259
    [11] PARK C.Nonequilibrium hypersonic aerothermodynamics[M].New York:Wiley, 1989.
    [12] PARK C.Rate parameters for electronic excitation of diatomic Molecules Ⅰ.Electron-impact processes[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings.Reston: AIAA, 2008: 1206.
    [13] PARK C.Rate parameters for electronic excitation of diatomic Molecules Ⅱ.Heavy particle-impact processes[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings.Reston: AIAA, 2008: 1446.
    [14] TEULET P, SARRETTE J P, GOMES A M.Calculation of electron impact inelastic cross sections and rate coefficients for diatomic molecules.application to air molecules[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 62(5):549-569. doi: 10.1016/S0022-4073(98)00129-0
    [15] JOHNSTON C O.Nonequilibrium shock-layer radiative heating for earth and titan entry[D].Blacksburg: Virginia Polytechnic Institute and State University, 2006: 116-126. https://www.researchgate.net/publication/253796496_Nonequilibrium_shock-layer_radiative_heating_for_Earth_and_Titan_entry
    [16] 吴杰, 董雁冰.热力学非平衡分子辐射中的重粒子影响[J].红外与激光工程, 2012, 41(11):2981-2985. doi: 10.3969/j.issn.1007-2276.2012.11.023

    WU J, DONG Y B.Impact of heavy particles in radiation from thermally nonequilibrium molecules[J].Infrared and Laser Engineering, 2012, 41(11):2981-2985(in Chinese). doi: 10.3969/j.issn.1007-2276.2012.11.023
    [17] ARNOLD J O, WHITING E E, LYLE G C.Line-by-line calculation of spectra from diatomic molecules and atoms assuming a voigt line profile[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 1969, 9(6):775-798. doi: 10.1016/0022-4073(69)90075-2
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  105
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-27
  • 录用日期:  2018-10-17
  • 网络出版日期:  2019-03-20

目录

    /

    返回文章
    返回
    常见问答