留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进共生生物搜索算法的空战机动决策

高阳阳 余敏建 韩其松 董肖杰

高阳阳, 余敏建, 韩其松, 等 . 基于改进共生生物搜索算法的空战机动决策[J]. 北京航空航天大学学报, 2019, 45(3): 429-436. doi: 10.13700/j.bh.1001-5965.2018.0395
引用本文: 高阳阳, 余敏建, 韩其松, 等 . 基于改进共生生物搜索算法的空战机动决策[J]. 北京航空航天大学学报, 2019, 45(3): 429-436. doi: 10.13700/j.bh.1001-5965.2018.0395
GAO Yangyang, YU Minjian, HAN Qisong, et al. Air combat maneuver decision-making based on improved symbiotic organisms search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 429-436. doi: 10.13700/j.bh.1001-5965.2018.0395(in Chinese)
Citation: GAO Yangyang, YU Minjian, HAN Qisong, et al. Air combat maneuver decision-making based on improved symbiotic organisms search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 429-436. doi: 10.13700/j.bh.1001-5965.2018.0395(in Chinese)

基于改进共生生物搜索算法的空战机动决策

doi: 10.13700/j.bh.1001-5965.2018.0395
基金项目: 

装备科研项目 2017024113B41057

详细信息
    作者简介:

    高阳阳  男, 硕士研究生。主要研究方向:航空兵指挥自动化

    余敏建  男, 硕士, 教授。主要研究方向:航空兵指挥自动化

    韩其松  男, 硕士, 讲师。主要研究方向:航空兵作战筹划

    董肖杰  男, 硕士研究生。主要研究方向:航空兵作战筹划

    通讯作者:

    余敏建, E-mail:1090389519@qq.com

  • 中图分类号: V271.4

Air combat maneuver decision-making based on improved symbiotic organisms search algorithm

Funds: 

Equipment Research Project 2017024113B41057

More Information
  • 摘要:

    针对现代空战机动决策问题,提出了一种基于改进共生生物搜索(SOS)算法的空战机动决策方法。首先,分析了传统基本机动动作库存在的不足,对其进行了改进和扩充,设计了11种常用的基本机动动作;然后,综合考虑角度、距离、速度、高度和战机性能优势,构造了战机机动决策优势函数;最后,针对传统共生生物搜索算法在收敛速度、收敛精度以及局部最优上存在的缺陷,将轮盘赌选择方法、动态变异率和梯度思想引入到传统算法当中,对算法有效性和算法性能进行了仿真分析。仿真结果表明,改进的共生生物搜索算法在收敛速度、收敛精度以及跳出局部最优上更具优势,能够满足空战机动决策需求。

     

  • 图 1  基本机动动作库

    Figure 1.  Basic maneuver inventory

    图 2  空战优势评价指标体系

    Figure 2.  Air combat superiority evaluation index system

    图 3  敌我机几何态势划分示意图

    Figure 3.  Schematic of geometric situation division of enemy and our fighter

    图 4  轮盘赌操作示意图

    Figure 4.  Schematic of roulette wheel

    图 5  改进共生生物搜索算法流程

    Figure 5.  Flowchart of improved SOS algorithm

    图 6  敌我双方空战对抗三维航迹展示

    Figure 6.  Three-dimensional track display of both sides in air combat

    图 7  敌我双方航向角、飞行高度、飞行速度和空战优势变化曲线

    Figure 7.  Heading angle, height, speed and air combat superiority change curves of both sides

    图 8  3种算法收敛精度对比

    Figure 8.  Comparison of convergence accuracy of three algorithms

    图 9  3种算法最优值和消耗时间对比

    Figure 9.  Comparison of optimal values and time consumption of three algorithms

  • [1] 张涛, 于雷, 周中良, 等.基于变权重伪并行遗传算法的空战机动决策[J].飞行力学, 2012, 30(5):470-474. http://d.old.wanfangdata.com.cn/Periodical/fxlx201205021

    ZHANG T, YU L, ZHOU Z L, et al.Decision-making for air combat maneuvering based on variable weight pseudo-parallel genetical gorithm[J].Flight Dynamics, 2012, 30(5):470-474(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fxlx201205021
    [2] 孟光磊, 罗元强, 梁宵, 等.基于动态贝叶斯网络的空战决策方法[J].指挥控制与仿真, 2017, 39(3):49-54. doi: 10.3969/j.issn.1673-3819.2017.03.011

    MENG G L, LUO Y Q, LIANG X, et al.Air combat decision-making method based on dynamic Bayesian network[J].Command Control and Simulation, 2017, 39(3):49-54(in Chinese). doi: 10.3969/j.issn.1673-3819.2017.03.011
    [3] 周思羽, 吴文海, 孔繁峨, 等.基于随机决策准则的改进多级影响图机动决策方法[J].北京理工大学学报, 2013, 33(3):296-301. doi: 10.3969/j.issn.1001-0645.2013.03.017

    ZHOU S Y, WU W H, KONG F E, et al.Improved multistage influence diagram maneuvering decision method based on stochastic decision criterions[J].Transactions of Beijing Institute of Technology, 2013, 33(3):296-301(in Chinese). doi: 10.3969/j.issn.1001-0645.2013.03.017
    [4] PARK H, LEE B Y, TAHK M J, et al.Differential game based air combat maneuver generation using scoring function matrix[J].International Journal of Aeronautical and Space Sciences, 2016, 17(2):204-213. doi: 10.5139/IJASS.2016.17.2.204
    [5] 赖少发, 刘华军.机动目标跟踪支持向量回归学习新方法[J].南京理工大学学报, 2017, 41(2):264-268. http://d.old.wanfangdata.com.cn/Periodical/njlgdxxb201702019

    LAI S F, LIU H J.Novel approach in maneuvering target tracking based on support vector regression[J].Journal of Nanjing University of Science and Technology, 2017, 41(2):264-268(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/njlgdxxb201702019
    [6] 张涛, 于雷, 周中良, 等.基于混合算法的空战机动决策[J].系统工程与电子技术, 2013, 35(7):1445-1450. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201307015

    ZHANG T, YU L, ZHOU Z L, et al.Decision-making for aircombat maneuvering based on hybrid algorithm[J].Systems Engineering and Electronics, 2013, 35(7):1445-1450(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201307015
    [7] CHENG M Y, PRAYOGO D.Symbiotic organisms search:A new metaheuristic optimization algorithm[J].Computers & Structures, 2014, 139:98-112. http://www.sciencedirect.com/science/article/pii/S0045794914000881
    [8] 王艳娇, 马壮.基于子种群拉伸操作的精英共生生物搜索算法[J].控制与决策, 2018, 18(4):1-11. http://youxian.cnki.com.cn/yxdetail.aspx?filename=KZYC20180418009&dbname=CAPJ2018

    WANG Y J, MA Z.Elite symbiotic organisms search algorithm based on subpopulation stretching operation[J].Control and Decision, 2018, 18(4):1-11(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=KZYC20180418009&dbname=CAPJ2018
    [9] 王艳娇, 陶欢欢.基于旋转学习策略的共生生物搜索算法[J].计算机应用研究, 2017, 34(9):2614-2617. doi: 10.3969/j.issn.1001-3695.2017.09.011

    WANG Y J, TAO H H.Symbiotic organisms search algorithm based on rotating learning strategy[J].Computer Application Research, 2017, 34(9):2614-2617(in Chinese). doi: 10.3969/j.issn.1001-3695.2017.09.011
    [10] 周虎, 赵辉, 周欢, 等.自适应精英反向学习共生生物搜索算法[J].计算机工程与应用, 2016, 52(19):161-166. doi: 10.3778/j.issn.1002-8331.1604-0110

    ZHOU H, ZHAO H, ZHOU H, et al.Symbiotic organisms search algorithm using adaptive elite opposition based learning[J].Computer Engineering and Applications, 2016, 52(19):161-166(in Chinese). doi: 10.3778/j.issn.1002-8331.1604-0110
    [11] VIRTANEN K, RAIVIO T, HAMALAINEN R P.Decision theoretical approach to pilot simulation[J].Journal of Aircraft, 1999, 36(4):632-641. doi: 10.2514/2.2505
    [12] AUSTIN F.Automated maneuvering decisions for air-to-air combat: AIAA-87-2393[R].Reston: AIAA, 1987.
    [13] 卢惠民, 杨蔷薇.飞行仿真数学建模与实践[M].北京:航空工业出版社, 2007.

    LU H M, YANG Q W.Flight simulation mathematic modeling and practice[M].Beijing:Aviation Industry Press, 2007(in Chinese).
    [14] 何旭, 景小宁, 冯超.基于蒙特卡洛树搜索方法的空战机动决策[J].空军工程大学学报(自然科学版), 2017, 18(5):36-41. doi: 10.3969/j.issn.1009-3516.2017.05.007

    HE X, JING X N, FENG C.Air combat maneuver decision based on MCTS method[J].Journal of Airforce Engineering University (Natural Science Edition), 2017, 18(5):36-41(in Chinese). doi: 10.3969/j.issn.1009-3516.2017.05.007
    [15] 国海峰, 侯满义, 张庆杰, 等.基于统计学原理的无人作战飞机鲁棒机动决策[J].兵工学报, 2017, 38(1):160-167. doi: 10.3969/j.issn.1000-1093.2017.01.021

    GUO H F, HOU M Y, ZHANG Q J, et al.UCAV robust maneuver decision based on statistics principle[J].Acta Armamentarii, 2017, 38(1):160-167(in Chinese). doi: 10.3969/j.issn.1000-1093.2017.01.021
  • 加载中
图(9)
计量
  • 文章访问数:  749
  • HTML全文浏览量:  79
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-27
  • 录用日期:  2018-09-19
  • 网络出版日期:  2019-03-20

目录

    /

    返回文章
    返回
    常见问答