Air combat maneuver decision-making based on improved symbiotic organisms search algorithm
-
摘要:
针对现代空战机动决策问题,提出了一种基于改进共生生物搜索(SOS)算法的空战机动决策方法。首先,分析了传统基本机动动作库存在的不足,对其进行了改进和扩充,设计了11种常用的基本机动动作;然后,综合考虑角度、距离、速度、高度和战机性能优势,构造了战机机动决策优势函数;最后,针对传统共生生物搜索算法在收敛速度、收敛精度以及局部最优上存在的缺陷,将轮盘赌选择方法、动态变异率和梯度思想引入到传统算法当中,对算法有效性和算法性能进行了仿真分析。仿真结果表明,改进的共生生物搜索算法在收敛速度、收敛精度以及跳出局部最优上更具优势,能够满足空战机动决策需求。
Abstract:Aimed at the problem of modern air combat maneuver decision-making, an air combat maneuver decision-making method based on improved symbiotic organisms search (SOS) algorithm is proposed. Firstly, the shortcomings of the traditional basic maneuver inventory are analyzed, improved and expanded, and 11 kinds of common basic maneuver are designed. Secondly, considering the angle, distance, speed, altitude and the performance advantages of fighter planes, the decision-making advantage function of fighter planes is constructed. Finally, aimed at the shortcomings of the traditional SOS algorithm in convergence speed, convergence accuracy and local optimality, the roulette wheel selection method, dynamic variation rate and gradient idea are introduced into the traditional algorithm, and the effectiveness and performance of the algorithm are simulated and analyzed. The simulation results show that the improved SOS algorithm has more advantages in convergence speed, convergence accuracy and jump out of local optimum, and can meet the air combat maneuver decision-making requirements.
-
-
[1] 张涛, 于雷, 周中良, 等.基于变权重伪并行遗传算法的空战机动决策[J].飞行力学, 2012, 30(5):470-474.ZHANG T, YU L, ZHOU Z L, et al.Decision-making for air combat maneuvering based on variable weight pseudo-parallel genetical gorithm[J].Flight Dynamics, 2012, 30(5):470-474(in Chinese). [2] 孟光磊, 罗元强, 梁宵, 等.基于动态贝叶斯网络的空战决策方法[J].指挥控制与仿真, 2017, 39(3):49-54. doi: 10.3969/j.issn.1673-3819.2017.03.011MENG G L, LUO Y Q, LIANG X, et al.Air combat decision-making method based on dynamic Bayesian network[J].Command Control and Simulation, 2017, 39(3):49-54(in Chinese). doi: 10.3969/j.issn.1673-3819.2017.03.011 [3] 周思羽, 吴文海, 孔繁峨, 等.基于随机决策准则的改进多级影响图机动决策方法[J].北京理工大学学报, 2013, 33(3):296-301. doi: 10.3969/j.issn.1001-0645.2013.03.017ZHOU S Y, WU W H, KONG F E, et al.Improved multistage influence diagram maneuvering decision method based on stochastic decision criterions[J].Transactions of Beijing Institute of Technology, 2013, 33(3):296-301(in Chinese). doi: 10.3969/j.issn.1001-0645.2013.03.017 [4] PARK H, LEE B Y, TAHK M J, et al.Differential game based air combat maneuver generation using scoring function matrix[J].International Journal of Aeronautical and Space Sciences, 2016, 17(2):204-213. doi: 10.5139/IJASS.2016.17.2.204 [5] 赖少发, 刘华军.机动目标跟踪支持向量回归学习新方法[J].南京理工大学学报, 2017, 41(2):264-268.LAI S F, LIU H J.Novel approach in maneuvering target tracking based on support vector regression[J].Journal of Nanjing University of Science and Technology, 2017, 41(2):264-268(in Chinese). [6] 张涛, 于雷, 周中良, 等.基于混合算法的空战机动决策[J].系统工程与电子技术, 2013, 35(7):1445-1450.ZHANG T, YU L, ZHOU Z L, et al.Decision-making for aircombat maneuvering based on hybrid algorithm[J].Systems Engineering and Electronics, 2013, 35(7):1445-1450(in Chinese). [7] CHENG M Y, PRAYOGO D.Symbiotic organisms search:A new metaheuristic optimization algorithm[J].Computers & Structures, 2014, 139:98-112. [8] 王艳娇, 马壮.基于子种群拉伸操作的精英共生生物搜索算法[J].控制与决策, 2018, 18(4):1-11.WANG Y J, MA Z.Elite symbiotic organisms search algorithm based on subpopulation stretching operation[J].Control and Decision, 2018, 18(4):1-11(in Chinese). [9] 王艳娇, 陶欢欢.基于旋转学习策略的共生生物搜索算法[J].计算机应用研究, 2017, 34(9):2614-2617. doi: 10.3969/j.issn.1001-3695.2017.09.011WANG Y J, TAO H H.Symbiotic organisms search algorithm based on rotating learning strategy[J].Computer Application Research, 2017, 34(9):2614-2617(in Chinese). doi: 10.3969/j.issn.1001-3695.2017.09.011 [10] 周虎, 赵辉, 周欢, 等.自适应精英反向学习共生生物搜索算法[J].计算机工程与应用, 2016, 52(19):161-166. doi: 10.3778/j.issn.1002-8331.1604-0110ZHOU H, ZHAO H, ZHOU H, et al.Symbiotic organisms search algorithm using adaptive elite opposition based learning[J].Computer Engineering and Applications, 2016, 52(19):161-166(in Chinese). doi: 10.3778/j.issn.1002-8331.1604-0110 [11] VIRTANEN K, RAIVIO T, HAMALAINEN R P.Decision theoretical approach to pilot simulation[J].Journal of Aircraft, 1999, 36(4):632-641. doi: 10.2514/2.2505 [12] AUSTIN F.Automated maneuvering decisions for air-to-air combat: AIAA-87-2393[R].Reston: AIAA, 1987. [13] 卢惠民, 杨蔷薇.飞行仿真数学建模与实践[M].北京:航空工业出版社, 2007.LU H M, YANG Q W.Flight simulation mathematic modeling and practice[M].Beijing:Aviation Industry Press, 2007(in Chinese). [14] 何旭, 景小宁, 冯超.基于蒙特卡洛树搜索方法的空战机动决策[J].空军工程大学学报(自然科学版), 2017, 18(5):36-41. doi: 10.3969/j.issn.1009-3516.2017.05.007HE X, JING X N, FENG C.Air combat maneuver decision based on MCTS method[J].Journal of Airforce Engineering University (Natural Science Edition), 2017, 18(5):36-41(in Chinese). doi: 10.3969/j.issn.1009-3516.2017.05.007 [15] 国海峰, 侯满义, 张庆杰, 等.基于统计学原理的无人作战飞机鲁棒机动决策[J].兵工学报, 2017, 38(1):160-167. doi: 10.3969/j.issn.1000-1093.2017.01.021GUO H F, HOU M Y, ZHANG Q J, et al.UCAV robust maneuver decision based on statistics principle[J].Acta Armamentarii, 2017, 38(1):160-167(in Chinese). doi: 10.3969/j.issn.1000-1093.2017.01.021 期刊类型引用(12)
1. 李文锋,周敬龙,王其,蒋绍勇,贺利军. 超宽带信号的非视距识别与测距误差抑制. 控制与决策. 2024(08): 2605-2612 . 百度学术
2. 谢飞,周敬龙,李文锋,张强. 动态环境下UWB测距的NLOS影响分析与优化. 武汉理工大学学报. 2022(01): 80-87 . 百度学术
3. 江渝川,何国斌. 基于红外视觉技术的机器人移动轨迹智能检测研究. 激光杂志. 2022(10): 184-187 . 百度学术
4. 刘芬. 基于PLC的工业机器人轨迹跟踪自动化控制系统设计. 自动化与仪器仪表. 2021(07): 84-88 . 百度学术
5. 朱天元,林艺旻. 虚拟现实和激光传感技术的机器人轨迹跟踪. 激光杂志. 2021(10): 157-161 . 百度学术
6. 郭家伟,谈波,陈华,吴昊. 爬壁机器人底盘结构全向移动自主控制设计. 机械设计与制造. 2021(11): 158-161 . 百度学术
7. 纪海宾,师彩云. 基于Origin的移动机器人测距传感器参数标定. 现代信息科技. 2020(09): 40-42+45 . 百度学术
8. 谌稳帅,汪地,徐佳丽. 基于UWB的水果采摘跟随收集系统的设计. 工业控制计算机. 2020(11): 13-15+18 . 百度学术
9. 代伟业,姜启龙,刘栋. 船舶导航机器移动轨迹的实时检测和跟踪研究. 舰船科学技术. 2020(22): 130-132 . 百度学术
10. 卫恒,吕强,刘扬,林辉灿,梁冰. 基于状态切换的分布式多机器人编队控制. 兵工学报. 2019(05): 1103-1112 . 百度学术
11. 徐庆坤,宋中越. 基于UWB的自主跟随机器人定位系统的设计. 计算机工程与设计. 2019(11): 3337-3341 . 百度学术
12. 郑亚君,薛磊,董璐,王庆领. 基于UWB定位技术的多移动机器人编队控制. 智能科学与技术学报. 2019(01): 83-87 . 百度学术
其他类型引用(11)
-