留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环电载荷下大功率LED金引线疲劳断裂寿命预测

樊嘉杰 李磊 钱诚 胡爱华 樊学军 张国旗

樊嘉杰, 李磊, 钱诚, 等 . 循环电载荷下大功率LED金引线疲劳断裂寿命预测[J]. 北京航空航天大学学报, 2019, 45(3): 478-485. doi: 10.13700/j.bh.1001-5965.2018.0401
引用本文: 樊嘉杰, 李磊, 钱诚, 等 . 循环电载荷下大功率LED金引线疲劳断裂寿命预测[J]. 北京航空航天大学学报, 2019, 45(3): 478-485. doi: 10.13700/j.bh.1001-5965.2018.0401
FAN Jiajie, LI Lei, QIAN Cheng, et al. Fatigue fracture lifetime prediction for gold bonding wires of high-power LED under cyclically electrical loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 478-485. doi: 10.13700/j.bh.1001-5965.2018.0401(in Chinese)
Citation: FAN Jiajie, LI Lei, QIAN Cheng, et al. Fatigue fracture lifetime prediction for gold bonding wires of high-power LED under cyclically electrical loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 478-485. doi: 10.13700/j.bh.1001-5965.2018.0401(in Chinese)

循环电载荷下大功率LED金引线疲劳断裂寿命预测

doi: 10.13700/j.bh.1001-5965.2018.0401
基金项目: 

国家自然科学基金 51805147

国家自然科学基金 61673037

江苏省"六大人才高峰"高层次人才项目 GDZB-017

中央高校基本科研业务费专项资金 2017B15014

国家国际科技合作专项 2015DFT10110

详细信息
    作者简介:

    樊嘉杰  男, 博士, 副教授, 硕士生导师。主要研究方向:机械电子器件及系统故障诊断和预测、半导体照明系统可靠性评估、第三代半导体封装及组装工艺等

    通讯作者:

    樊嘉杰, E-mail:jiajie.fan@hhu.edu.cn

  • 中图分类号: TN312.8

Fatigue fracture lifetime prediction for gold bonding wires of high-power LED under cyclically electrical loading

Funds: 

National Natural Science Foundation of China 51805147

National Natural Science Foundation of China 61673037

the Six Talent Peaks Project of Jiangsu Province, China GDZB-017

the Fundamental Research Funds for the Central Universities 2017B15014

International S & T Cooperation Program of China 2015DFT10110

More Information
  • 摘要:

    随着大功率发光二极管(LED)在照明领域的普及与广泛应用,可靠性逐渐成为研究的重点。大功率LED封装器件中金引线疲劳断裂失效一直是制约其可靠性的重要因素。通过针对大功率LED封装器件中的金引线力学仿真与功率循环试验相结合的方法,首先确定循环电载荷条件下该型LED的主要失效原因为金引线疲劳断裂,其次提出基于电流加速模型的加速因子提取方法和基于应变幅值的Coffin-Manson解析寿命预测方法,最终完成对LED金引线疲劳断裂寿命的预测和试验验证。研究结果表明:所提方法具有较高的寿命预测精度,可以满足大功率LED封装器件可靠性快速、准确评估的要求。

     

  • 图 1  基于电压加速模型的加速因子提取

    Figure 1.  Extracted acceleration factors based on voltage acceleration model

    图 2  本文所选大功率LED样品

    Figure 2.  High-power LEDs used in this paper

    图 3  LED功率循环老化试验平台装置图

    Figure 3.  Power cycling aging test platform for LEDs

    图 4  大功率LED的仿真模型

    Figure 4.  Simulation model of high-power LED

    图 5  功率循环载荷示意图

    Figure 5.  Schematic of power cycling loading

    图 6  功率循环测试后金引线的von Mises应力仿真分布

    Figure 6.  Simulated von Mises stress distribution of gold bonding wire after power cycling test

    图 7  功率循环测试后LED失效样品图

    Figure 7.  Failed LED sample after power cycling test

    图 8  不同电流条件下金引线的塑性应变变化过程

    Figure 8.  Changing process of plastic strain of gold bonding wire under different current conditions

    表  1  三种正向电流条件下的测试结果

    Table  1.   Test results under conditions of three forward currents

    正向电流I/mA 器件内阻RS 压力反向饱和电流Is1/(10-9A) 参考反向饱和电流Is0/(10-10A) 理想因子n
    800 4.78 1.4 2 2.67
    900 4.37 2.3 2 2.67
    1000 4.04 2.9 2 2.67
    下载: 导出CSV

    表  2  加速寿命测量结果和预测结果对比

    Table  2.   Comparison of accelerated lifetime testing results and prediction results

    正向电流/mA 63%平均失效时间/h 加速因子 预测寿命/h 700mA试验寿命/h 绝对误差/%
    800 400 4.65 1860 1765 5.38
    900 82 21.24 1742 1765 1.30
    1000 26 68.31 1776 1765 0.62
    下载: 导出CSV

    表  3  基于仿真的金引线疲劳寿命预测结果

    Table  3.   Gold bonding wire fatigue lifetime prediction results based on simulations

    电流/mA 应变幅 实测寿命/h 预测寿命/h 误差/%
    700 0.000590 1765 1887 6.912
    800 0.000667 400
    900 0.000757 82
    1000 0.000840 26
    下载: 导出CSV
  • [1] VAN DRIEL W D, FAN X J.Solidstate lighting reliability:Components to systems[M].Berlin:Springer, 2012.
    [2] CHANG M H, DAS D, VARDE P V, et al.Light emitting diodes reliability review[J].Microelectronics Reliability, 2012, 52(5):762-782. doi: 10.1016/j.microrel.2011.07.063
    [3] 鲁光祝.IGBT功率模块寿命预测技术研究[D].重庆: 重庆大学, 2012.

    LU G Z.Lifetime prediction for IGBT power module[D].Chongqing: Chongqing University, 2012(in Chinese).
    [4] MERKLE L, KADEN T, SONNER M, et al.Mechanical fatigue properties of heavy aluminium wire bonds for power applications[C]//Electronics System-Integration Technology Conference.Piscataway, NJ: IEEE Press, 2008: 1363-1368.
    [5] HU J M, PECHT M, DASGUPTA A.A probabilistic approach for predicting thermal fatigue life of wire bonding in microelectronics[J].Journal of Electronic Packaging, 1991,113(3):275-285. doi: 10.1115/1.2905407
    [6] HUA Y, LIN M, BASARAN C.Failure modes and FEM analysis of power electronic packaging[J].Finite Elements in Analysis & Design, 2002, 38(7):601-612. https://www.sciencedirect.com/science/article/pii/S0168874X01000944
    [7] SPENCER M L, LORENZ R D.Analysis and in-situ measurement of thermal-mechanical strain in active silicon power semiconductors[C]//Industry Applications Society Meeting.Piscataway, NJ: IEEE Press, 2008: 1465-1471.
    [8] 李志星, 张鑫宇, 平恩顺.基于PFA的IGBT键合线失效机理及寿命预测[J].半导体技术, 2013, 38(9):63-66. http://d.old.wanfangdata.com.cn/Periodical/bdtjs201309008

    LI Z X, ZHANG X Y, PING E S.Failure mechanism and lifetime forecasting based on PFA for bonding wire in IGBT[J].Semiconductor Technology, 2013, 38(9):63-66(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bdtjs201309008
    [9] 姚二现, 庄伟东, 常海萍.IGBT模块功率循环疲劳寿命预测[J].电子产品可靠性与环境试验, 2013, 31(2):12-17. doi: 10.3969/j.issn.1672-5468.2013.02.004

    YAO E X, ZHUANG W D, CHANG H P.Power cycle fatigue lifetime prediction of IGBT module[J].Electronic Product Reliability & Environmental Testing, 2013, 31(2):12-17(in Chinese). doi: 10.3969/j.issn.1672-5468.2013.02.004
    [10] YANG L, AGYAKWA P A, JOHNSON C M.A time-domain physics-of-failure model for the lifetime prediction of wire bond interconnects[J].Microelectronics Reliability, 2011, 51(9-11):1882-1886. doi: 10.1016/j.microrel.2011.07.052
    [11] BIELEN J, GOMMANS J J, THEUNIS F.Prediction of high cycle fatigue in aluminum bond wires: A physics of failure approach combining experiments and multi-physics simulations[C]//International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems.Piscataway, NJ: IEEE Press, 2006: 1-7.
    [12] MATSUNAGA T, UEGAI Y.Thermal fatigue life evaluation of aluminum wire bonds[C]//Electronics Systemintegration Technology Conference.Piscataway, NJ: IEEE Press, 2006: 726-731.
    [13] HAGER C, STUCK A, TRONEL Y, et al.Comparison between finite-element and analytical calculations for the lifetime estimation of bond wires in IGBT modules[C]//12th International Symposium on Power Semiconductor Devices and ICs.Piscataway, NJ: IEEE Press, 2000: 291-294.
    [14] CIAPPA M, FICHTNER W.Lifetime prediction of IGBT modules for traction applications[C]//IEEE International Proceedings on Reliability Physics.Piscataway, NJ: IEEE Press, 2000: 210-216.
    [15] ZHANG S U, BANG W L.Fatigue life evaluation of wire bonds in LED packages using numerical analysis[J].Microelectronics Reliability, 2014, 54(12):2853-2859. doi: 10.1016/j.microrel.2014.07.142
    [16] AGYAKWA P A, CORFIELD M R, YANG L, et al.Microstructural evolution of ultrasonically bonded high purity Al wire during extended range thermal cycling[J].Microelectronics Reliability, 2011, 51(2):406-415. doi: 10.1016/j.microrel.2010.08.018
    [17] YANG L, AGYAKWA P A, JOHNSON C M.Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules[J].IEEE Transactions on Device & Materials Reliability, 2013, 13(1):9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1d3bc2dbcdb841264de040101ed81ae5
    [18] 林亮, 陈志忠, 童玉珍, 等.GaN基大功率倒装焊蓝光LED的I-V特性研究[J].半导体光电, 2007, 28(6):766-768. doi: 10.3969/j.issn.1001-5868.2007.06.004

    LIN L, CHEN Z Z, TONG Y Z, et al.Research on current-voltage characteristics of GaN-based high power flip-chip blue LED[J].Semiconductor Optoelectronics, 2007, 28(6):766-768(in Chinese). doi: 10.3969/j.issn.1001-5868.2007.06.004
    [19] 李炳乾, 布良基, 甘雄文, 等.LED正向压降随温度的变化关系研究[J].光子学报, 2003, 32(11):1349-1351. http://d.old.wanfangdata.com.cn/Periodical/gzxb200311018

    LI B Q, BU L J, GAN X W, et al.Research on the relationship of the change in forward voltage with temperature of light emitting diode[J].Acta Photonica Sinica, 2003, 32(11):1349-1351(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gzxb200311018
    [20] 唐红雨, 杨道国, 张国旗, 等.硅胶粘弹性对大功率LED可靠性的影响[J].电子元件与材料, 2013, 32(9):51-55. doi: 10.3969/j.issn.1001-2028.2013.09.015

    TANG H Y, YANG D G, ZHANG G Q, et al.Influences of viscoelasticity of silicone on the reliability of high power light emitted diode[J].Electronic Components & Materials, 2013, 32(9):51-55(in Chinese). doi: 10.3969/j.issn.1001-2028.2013.09.015
    [21] 董月香.疲劳寿命预测方法综述[J].大型铸锻件, 2006(3):39-41. doi: 10.3969/j.issn.1004-5635.2006.03.014

    DONG Y X.General description of the fatigue life prediction method[J].Heavy Casting and Forging, 2006(3):39-41(in Chinese). doi: 10.3969/j.issn.1004-5635.2006.03.014
    [22] 郑战光, 蔡敢为, 李兆军, 等.基于损伤力学阐释Manson-Coffin低周疲劳模型[J].中国机械工程, 2011, 22(7):812-814. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201107014.htm

    ZHENG Z G, CAI G W, LI Z J, et al.Interpretation of Manson-Coffin model of low cycle fatigue based on damage mechanics[J].China Mechanical Engineering, 2011, 22(7):812-814(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201107014.htm
    [23] ZHANG B, TAO G.An improved Coffin-Manson model for mid-power LED wire-bonding reliability[C]//IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits.Piscataway, NJ: IEEE Press, 2014: 78-82.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  102
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 录用日期:  2018-10-15
  • 网络出版日期:  2019-03-20

目录

    /

    返回文章
    返回
    常见问答