-
摘要:
针对类X-51A飞行器在超声速大迎角状态下存在的大范围非定常分离流动,开展了精细化湍流数值模拟研究。计算基于高阶格式下的延迟分离涡模拟方法(DDES),来流马赫数为2.5,迎角为10°。分析了该复杂流场中存在的分离流动现象、分离流动诱导的气动特性变化规律以及压力脉动特点;其中重点研究了壁面压力脉动强度分布情况和监测点压力脉动频谱特性。分析结果表明:飞行器大迎角飞行时从侧缘诱导出明显的分离涡,并对尾部舵面产生干扰;受干扰尾舵表现出明显的非线性及非定常气动特性;分离涡的存在导致飞行器尾舵前缘等位置的壁面压力脉动显著增强,200~300 Hz的低频高幅值脉动可能会导致结构破坏。
-
关键词:
- 非定常 /
- 分离流动 /
- 压力脉动 /
- 延迟分离涡模拟(DDES) /
- 数值模拟
Abstract:High-resolution turbulence simulations were performed for an X-51A-like aircraft model to investigate its complex unsteady separation flow caused by high angle of attack conditions. The calculation is based on delayed detached-eddy simulation (DDES) methodology under high order. Flow Mach number is 2.5, and the angle of attack is 10°. In this paper, separation flow phenomenon, separation flow induced aerodynamic characteristic variation law and pressure fluctuation features are analyzed. Especially, the distribution of wall pressure fluctuation and the spectrum characteristics of the monitors are mainly studied. The result shows that lateral edges of the model lead to a large number of separated vortices when the aircraft flies under large angle of attack, which cause strong interference with the vertical tail rudder. The interfered tail rudder exhibits obvious nonlinear and unsteady aerodynamic properties. In addition, the presence of separation vortices also leads to a significant increase in pressure fluctuation on the aircraft wall, especially on the leading edge of tail rudders. The power spectrum density of pressure shows that low frequency and high amplitude fluctuation of 200-300 Hz may cause structural damage.
-
表 1 计算状态
Table 1. Computational condition
参数 马赫数 来流静压/Pa 来流静温/K 来流单位雷诺数/m-1 数值 2.92 31 415 145 4.5×107 -
[1] JOYCE P J, POMROY J B.The hyper-X launch vehicle: Challenges and design considerations for hypersonic flight testing: AIAA-2005-3333[R].Reston: AIAA, 2005. [2] HANK J M, MURPHY J S, MUTZMAN R C.The X-51A scramjet engine flight demonstration program: AIAA-2008-2540[R].Reston: AIAA, 2008. [3] 罗金玲, 李超, 徐锦.高超声速飞行器机体/推进一体化设计的启示[J].航空学报, 2015, 36(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005LUO J L, LI C, XU J.Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005 [4] SPALART P R.Strategies for turbulence modelling and simulations[J].International Journal of Heat and Fluid Flow, 2000, 21(3):252-263. doi: 10.1016/S0142-727X(00)00007-2 [5] SMAGORINSKY J.General circulation experiments with the primitive equations[J].Monthly Weather Review, 1963, 91(3):99-164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [6] BROCK J M, SUBBAREDDY P K, CANDLER G V.Detached-eddy simulations of hypersonic capsule wake flow[J].AIAA Journal, 2015, 53(1):70-80. doi: 10.2514/1.J052771 [7] LVDEKE H, MULOT J D, HANNEMANN K.Launch vehicle base flow analysis using improved delayed detached-eddy simulation[J].AIAA Journal, 2015, 53(9):2454-2471. doi: 10.2514/1.J053297 [8] 邓艳丹, 黄生洪, 杨基明.一种X-51A相似飞行器模型的气动特性初探[J].空气动力学报, 2013, 31(3):376-380. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201303019DENG Y D, HUANG S H, YANG J M.A preliminary investigation on aerodynamic characteristics of an X-51A-like aircraft model[J].Acta Aerodynamica Sinica, 2013, 31(3):376-380(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201303019 [9] 罗文莉, 李道春, 向锦武.吸气式高超声速飞行器大迎角气动特性分析[J].航空学报, 2015, 36(1):223-231. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501018LUO W L, LI D C, XIANG J W.Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):223-231(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201501018 [10] ROE P L.Approximate Riemann solver, parameter vectors, and difference schemes[J].Journal of Computational Physics, 1981, 43(2):357-372. doi: 10.1016/0021-9991(81)90128-5 [11] JIANG G, SHU C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130 [12] YOON S, KWAK D.Three-dimensional incompressible Navier-Stokes equations solver using lower-upper symmetric-Gauss-Siedel algorithm[J].AIAA Journal, 1991, 29(6):874-875. doi: 10.2514/3.10671 [13] SPALART P R, JOU W, STRELETS M, et al.Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//1st Air Force Office of Scientific Research International Conference on DNS/LES, 1997: 137-147. https://www.researchgate.net/publication/236888805_Comments_on_the_Feasibility_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach [14] SPALART P R, ALLMARAS S R.A one-equation turbulence model for aerodynamic flows: AIAA-92-0439[R].Reston: AIAA, 1992. [15] SPALART P R, DECK S, SHUR M L, et al.A new version of detached-eddy simulation, resistant to ambiguous grid densities[J].Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195. doi: 10.1007/s00162-006-0015-0 [16] SETTLES G S, WILLIAMS D R, BACA B K, et al.Reattachment of a compressible turbulent free shear layer[J].AIAA Journal, 1982, 20(1):60-67. doi: 10.2514/3.51047 [17] HAYAKAWA K, SMITS A J, BOGDONOFF S M.Turbulence measurements in a compressible reattaching shear layer[J].AIAA Journal, 1984, 22(7):889-895. doi: 10.2514/3.48526 [18] SHEN Z H, SMITH D R, SMITS A J.Wall pressure fluctuations in the reattachment region of a supersonic free shear layer[J].Experiments in Fluids, 1993, 14(1):10-16. http://cn.bing.com/academic/profile?id=9ec69b3143a1e69ac9c48e4637d5306e&encoded=0&v=paper_preview&mkt=zh-cn [19] 吴子牛, 白晨媛, 李娟.高超声速飞行器流动特征分析[J].航空学报, 2015, 36(1):58-85. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501007WU Z N, BAI C Y, LI J.Analysis of flow characteristics for hypersonic vehicle[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):58-85(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201501007 [20] 张秀义.飞机结构声疲劳分析与抗声疲劳设计[J].航空学报, 1992, 13(3):197-210. doi: 10.3321/j.issn:1000-6893.1992.03.014ZHANG X Y.Sonic fatigue analysis and anti-sonic fatigue design of aircraft structure[J].Acta Aeronautica et Astronautica Sinica, 1992, 13(3):197-210(in Chinese). doi: 10.3321/j.issn:1000-6893.1992.03.014