-
摘要:
针对提高大范围土壤湿度测量精度的问题,研究了土壤湿度的全球卫星导航系统干涉测量法(GNSS-IR),提出了一种基于支持向量机(SVM)的土壤湿度反演模型,利用遗传算法(GA)的自动寻优功能寻找SVM的最佳参数。结果表明,GA-SVM模型在测试集上得到的土壤湿度反演值与实测值的平均绝对百分比误差(MAPE)仅为0.69%,最大相对误差(MRE)为1.22%,线性回归方程决定系数达到了0.956 9。进一步与统计回归、粒子群优化的SVM模型(PSO-SVM)及反向传播(BP)神经网络方法进行对比,结果说明:在样本数目有限的情况下,GA-SVM方法更适用于土壤湿度的GNSS-IR技术反演,且反演精度较高,泛化性能良好。
-
关键词:
- 土壤湿度 /
- 全球卫星导航系统(GNSS) /
- 干涉测量法(IR) /
- 支持向量机(SVM) /
- 遗传算法(GA)
Abstract:In order to improve the precision of soil moisture measurement in a wide range, in this paper, the global navigation satellite system interferometry and reflectometry (GNSS-IR) for soil moisture was studied and a soil moisture inversion model based on support vector machine (SVM) was proposed. In this model, the automatic optimizing function of genetic algorithm (GA) was applied to optimize the parameters of SVM. The results show that the mean absolute percentage error (MAPE), the maximum relative error (MRE) and the coefficient of determination for equation of linear regression are 0.69%, 1.22% and 0.9569 respectively between the soil moisture inverted by the proposed GA-SVM model and the ground measured values. In addition, the performance of GA-SVM model was also compared with the statistical regression, particle swarm optimization SVM model (PSO-SVM) and back propagation (BP) neural network. The comparison results show that the GA-SVM method is more suitable for the GNSS-IR soil moisture inversion than other machine learning algorithms in small training set scenario, and it has higher inversion precision and better generalization performance.
-
表 1 不同土壤湿度反演模型结果比较
Table 1. Result comparison of different soil moisture inversion models
日期 实测值/(cm3·cm-3) GA-SVM PSO-SVM BP神经网络 反演值/(cm3·cm-3) 绝对误差/(cm3·cm-3) 相对误差/% 反演值/(cm3·cm-3) 绝对误差/(cm3·cm-3) 相对误差/% 反演值/(cm3·cm-3) 绝对误差/(cm3·cm-3) 相对误差/% 2014-03-10 25.83 25.76 -0.07 0.27 26.14 0.31 1.20 26.52 0.69 2.67 2014-03-11 25.55 25.41 -0.14 0.55 26.18 0.63 2.47 26.95 1.40 5.48 2014-03-12 25.21 25.10 -0.11 0.44 25.30 0.09 0.36 27.09 1.88 7.46 2014-03-13 24.55 24.85 0.30 1.22 25.72 1.17 4.77 24.95 0.40 1.63 2014-03-14 24.45 24.64 0.19 0.78 25.38 0.93 3.80 24.99 0.54 2.21 2014-03-15 24.27 24.48 0.21 0.87 24.87 0.60 2.47 24.44 0.17 0.70 2014-03-16 24.07 24.24 0.17 0.71 24.24 0.17 0.71 25.23 1.16 4.82 2014-03-17 23.97 24.18 0.21 0.88 23.99 0.02 0.08 25.47 1.50 6.26 2014-03-18 23.83 23.99 0.16 0.67 23.94 0.11 0.46 24.10 0.27 1.13 2014-03-19 23.88 23.71 -0.17 0.71 24.62 0.74 3.10 24.66 0.78 3.27 2014-03-20 23.62 23.58 -0.04 0.17 24.06 0.44 1.86 25.55 1.93 8.17 2014-03-21 23.24 23.49 0.25 1.08 23.62 0.38 1.64 24.36 1.12 4.82 表 2 土壤湿度反演结果评价比较
Table 2. Comparison of soil moisture inversion result evaluation
评价指标 计算方法 GA-SVM PSO-SVM BP神经网络 平均绝对误差/(cm3·cm-3) 0.168 0.466 0.987 最大相对误差/% 1.22 4.77 8.18 均方根误差/(cm3·cm-3) 0.182 0.579 1.144 平均绝对百分比误差/% 0.69 1.91 4.05 -
[1] JACKSON T J, SCHMUGGE J, ENGMAN E T.Remote sensing applications to hydrology:Soil moisture[J].Hydrological Sciences Journal, 1996, 41(4):517-530. doi: 10.1080/02626669609491523 [2] 严颂华, 龚健雅, 张训械, 等.GNSS-R测量地表土壤湿度的地基实验[J].地球物理学报, 2011, 54(11):2735-2744. doi: 10.3969/j.issn.0001-5733.2011.11.003YAN S H, GONG J Y, ZHANG X X, et al.Ground based GNSS-R observations for soil moisture[J].Chinese Journal of Geophysics, 2011, 54(11):2735-2744(in Chinese). doi: 10.3969/j.issn.0001-5733.2011.11.003 [3] MARTIN-NEIRA M.A pasive reflectometry and interferometry system (PARIS) application to ocean altimetry[J].ESA Journal, 1993, 17(4):331-355. [4] RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, CAMPS A, et al.Soil moisture retrieval using GNSS-R techniques:Experimental results over a bare soil field[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3616-3624. doi: 10.1109/TGRS.2009.2030672 [5] LARSON K M, SMALL E E, GUTMANN E, et al.Using GPS multipath to measure soil moisture fluctuations:Initial results[J].GPS Solutions, 2008, 12(3):173-177. doi: 10.1007/s10291-007-0076-6 [6] CHEW C C, SMALL E E, LARSON K M, et al.Vegetation sen-sing using GPS-interferometric reflectometry:Theoretical effects of canopy parameters on signal-to-noise ratio data[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2755-2764. doi: 10.1109/TGRS.2014.2364513 [7] LI F, PENG X, CHEN X, et al.Analysis of key issues on GNSS-R soil moisture retrieval based on different antenna patterns[J].Sensors, 2018, 18(8):2498-2513. doi: 10.3390/s18082498 [8] YAN S H, ZHANG N, CHEN N C, et al.Feasibility of using signal strength indicator data to estimate soil moisture based on GNSS interference signal analysis[J].Remote Sensing Letters, 2018, 9(1):61-70. doi: 10.1080/2150704X.2017.1384587 [9] ZHANG S B, ROUSSEL N, BONIFACE K, et al.Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop[J].Hydrology & Earth System Sciences Discussions, 2017, 21(9):1-26. [10] LARSON K M, BRAUN J J, SMALL E E, et al.GPS multipath and its relation to near-surface soil moisture content[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1):91-99. doi: 10.1109/JSTARS.2009.2033612 [11] 敖敏思, 朱建军, 胡友健, 等.利用SNR观测值进行GPS土壤湿度监测[J].武汉大学学报(信息科学版), 2015, 40(1):117-120.AO M S, ZHU J J, HU Y J, et al.Comparative experiments on soil moisture monitoring with GPS SNR observations[J].Geomatics and Information Science of Wuhan University, 2015, 40(1):117-120(in Chinese). [12] CHEW C C, SMALL E E, LARSON K M, et al.Effects of near-surface soil moisture on GPS SNR data:Development of a retrieval algorithm for soil moisture[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):537-543. doi: 10.1109/TGRS.2013.2242332 [13] 杨磊, 吴秋兰, 张波, 等.SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法[J].北京航空航天大学学报, 2016, 42(6):1134-1141.YANG L, WU Q L, ZHANG B, et al.SVRM-assisted soil moisture retrieval method using reflected signal from BeiDou GEO satellites[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1134-1141(in Chinese). [14] ARROYO A A, CAMPS A, AGUASCA A, et al.Dual-polarization GNSS-R interference pattern technique for soil moisture mapping[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1533-1544. doi: 10.1109/JSTARS.2014.2320792 [15] BILICH A, LARSON K M.Correction published 29 March 2008:Mapping the GPS multipath environment using the signal-to-noise ratio(SNR)[J].Radio Science, 2016, 42(6):1-16. doi: 10.1029/2008RS003839 [16] CHEW C C, SMALL E E, LARSON K M.An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil[J].GPS Solutions, 2016, 20(3):1-13. [17] VAPNIK V.The nature of statistical learning theory[C]//Conference on Artificial Intelligence.Berlin: Springer, 1995: 988-999. [18] 李晓宇, 张新峰, 沈兰荪.一种确定径向基核函数参数的方法[J].电子学报, 2005, 33(12):2459-2463.LI X Y, ZHANG X F, SHEN L S.A selection means on the parameter of radius basis function[J].Acta Electronica Sinica, 2005, 33(12):2459-2463(in Chinese). [19] HOLLAND J H. Genetic algorithms[J].Scientific American, 1992,267(1):66-72. doi: 10.1038/scientificamerican0792-66 期刊类型引用(16)
1. 郭斐,陈惟杰,朱逸凡,张小红. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法. 武汉大学学报(信息科学版). 2024(05): 715-721 . 百度学术
2. 钟雪,杨明龙,唐秀娟,韩澳禧. 土壤水分卫星遥感反演方法研究进展. 干旱气象. 2024(04): 637-648 . 百度学术
3. 王式太,姜新伟,殷敏,王文贯,兰小艳,杨可心. GA辅助NLS的GNSS-IR土壤湿度反演方法. 大地测量与地球动力学. 2023(02): 180-185 . 百度学术
4. 聂士海,王龙,王梦柯,李鹏,梁磊,黄丹妮,刘斌. 结合机器学习的GNSS-IR多卫星双频组合土壤湿度反演. 测绘通报. 2023(10): 98-104 . 百度学术
5. 刘蓬,丁开华,刘源,王靖淇,王嘉颐. 国内外测站GNSS-IR土壤湿度反演的对比分析. 测绘科学. 2022(12): 74-82+119 . 百度学术
6. 杨昌智,毛克彪,孙一丹,王一帆,王平,郭中华. 北斗信号GNSS-R土壤湿度反演研究进展. 高技术通讯. 2022(11): 1196-1201 . 百度学术
7. 裴悦琨,韩心新. GNSS-R探测土壤湿度综述. 大地测量与地球动力学. 2021(02): 140-144 . 百度学术
8. 张双成,王涛,王丽霞,张京江,刘宁,赵桂生. BDS/GPS多卫星解译土壤湿度变化研究. 测绘科学. 2021(07): 7-14 . 百度学术
9. 余罗兼,童昕,沈国浪,李占福. 运用GA-SVM模型的砂石骨料分类方法. 华侨大学学报(自然科学版). 2020(02): 137-141 . 百度学术
10. 徐良骥,刘悦,谌芳,张坤. 基于GNSS-R技术的矿区复垦地土壤湿度反演方法研究. 煤炭科学技术. 2020(04): 129-135 . 百度学术
11. 孙波,梁勇,汉牟田,杨磊,荆丽丽,洪学宝. 基于GPS多星三频数据融合的GNSS-IR土壤湿度反演方法. 北京航空航天大学学报. 2020(06): 1089-1096 . 本站查看
12. 李占杰,陈基培,刘艳民,姚晓磊,鱼京善. 土壤水分遥感反演研究进展. 北京师范大学学报(自然科学版). 2020(03): 474-481 . 百度学术
13. 陈堃,沈飞,曹新运,朱逸凡. 基于深度置信网络的GNSS-IR土壤湿度反演. 测绘通报. 2020(09): 100-105 . 百度学术
14. 应烨伟,曾松伟,赵阿勇,颜菲菲. 基于颈环采集节点的母羊产前行为识别方法. 农业工程学报. 2020(21): 210-219 . 百度学术
15. 刘悦,徐良骥,宋承运,孟雪莹. 基于GNSS-R的煤矿区复垦地土壤湿度反演. 安徽理工大学学报(自然科学版). 2020(05): 29-35 . 百度学术
16. 刘倍雄,张绛丽,王璐. 基于二次解重扩算法的全球卫星导航系统抗干扰误差分析. 电子测量技术. 2019(18): 61-64 . 百度学术
其他类型引用(13)
-