留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结冰飞机非线性稳定域确定及安全操纵方法

周驰 李颖晖 郑无计 武朋玮 董泽洪

周驰, 李颖晖, 郑无计, 等 . 结冰飞机非线性稳定域确定及安全操纵方法[J]. 北京航空航天大学学报, 2019, 45(4): 705-713. doi: 10.13700/j.bh.1001-5965.2018.0430
引用本文: 周驰, 李颖晖, 郑无计, 等 . 结冰飞机非线性稳定域确定及安全操纵方法[J]. 北京航空航天大学学报, 2019, 45(4): 705-713. doi: 10.13700/j.bh.1001-5965.2018.0430
ZHOU Chi, LI Yinghui, ZHENG Wuji, et al. Nonlinear stability region determination and safety manipulation strategies for icing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 705-713. doi: 10.13700/j.bh.1001-5965.2018.0430(in Chinese)
Citation: ZHOU Chi, LI Yinghui, ZHENG Wuji, et al. Nonlinear stability region determination and safety manipulation strategies for icing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 705-713. doi: 10.13700/j.bh.1001-5965.2018.0430(in Chinese)

结冰飞机非线性稳定域确定及安全操纵方法

doi: 10.13700/j.bh.1001-5965.2018.0430
基金项目: 

国家"973"计划 2015CB755805

详细信息
    作者简介:

    周驰  男, 博士研究生。主要研究方向:先进控制理论及应用

    李颖晖  女, 博士, 教授。主要研究方向:非线性控制理论

    郑无计  男, 博士研究生。主要研究方向:飞行安全与飞行控制

    武朋玮  男, 硕士研究生。主要研究方向:飞行安全与可达性分析

    董泽洪  男, 硕士研究生。主要研究方向:先进控制理论及应用

    通讯作者:

    李颖晖, E-mail: liyinghui66@163.com

  • 中图分类号: V328

Nonlinear stability region determination and safety manipulation strategies for icing aircraft

Funds: 

National Basic Research Program of China 2015CB755805

More Information
  • 摘要:

    结冰会恶化飞机的动力学特性,造成飞行包线收缩,威胁飞行安全,研究结冰后飞机的非线性稳定域变化对于驾驶员操纵应对策略设计以及飞行安全的提高具有重要意义。以NASA的GTM为案例飞机,首先对飞机气动参数进行多项式拟合,同时结合结冰因子模型,建立了飞机在结冰条件下的纵向通道动力学模型;然后通过分岔分析方法对飞机在不同程度结冰条件和操纵指令下的飞行状态变化进行了研究,并将其用于指导驾驶员操纵,同时考虑到分岔分析方法的局限性,利用微分流形理论确定了飞行系统的非线性稳定域,并将其作为飞行安全边界;最后针对结冰情形,提出将分岔分析方法与微分流形理论相结合共同用于操纵指导,并进行了操纵时域验证。研究结果表明,结冰会使安全边界收缩,在小扰动的作用下都可能使飞行状态超出安全边界。随着结冰程度增加,飞机的稳定性质甚至会发生变化,此时飞行状态将很难维持在原有的安全边界以内,提出了通过指导驾驶员操纵指令变化使飞行状态到达新的安全边界。研究结果对于飞行安全操纵及边界保护都具有一定的指导意义。

     

  • 图 1  飞机纵向通道控制器结构

    Figure 1.  Structure for longitudinal channel controller of aircraft

    图 2  轨道弧长法构造稳定边界流程

    Figure 2.  Flowchart of stability boundary with track arc length method

    图 3  无结冰(η=0)分岔图

    Figure 3.  Bifurcation diagram without icing (η=0)

    图 4  结冰因子η=0.1分岔图

    Figure 4.  Bifurcation diagram for icing factor η=0.1

    图 5  结冰因子η=0.3分岔图

    Figure 5.  Bifurcation diagram for icing factor η=0.3

    图 6  流形方法精确性验证

    Figure 6.  Accuracy verification for manifold method

    图 7  不同结冰程度稳定域

    Figure 7.  Stability region for different degrees of icing

    图 8  不同操纵下稳定域

    Figure 8.  Stability region for different manipulations

  • [1] 屈亮, 李颖晖, 袁国强, 等.基于相平面法的结冰飞机纵向非线性稳定域分析[J].航空学报, 2016, 37(3):865-872. http://d.old.wanfangdata.com.cn/Periodical/hkxb201603013

    QU L, LI Y H, YUAN G Q, et al.Longitudinal nonlinear stabilizing region for icing aircraft based on phase-phane method[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):865-872(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201603013
    [2] VIKRANT S, PETROS G.Aircraft autopilot analysis and envelope protection for operation under icing conditions[J].Journal of Guidance, Control, and Dynamics, 2004, 27(3):454-465. doi: 10.2514/1.1214
    [3] ROBERT B.Aircraft icing[EB/OL].(2013-05-01)[2015-05-08].www.aopa.org/asf/publications/sa11.pdf.
    [4] MERRET J M, HOSSAIN K N, BRAGG M B.Envelope protection and atmospheric disturbances in icing encounters: AIAA-2002-0814[R].Reston: AIAA, 2002. https://www.researchgate.net/publication/269212559_Envelope_protection_and_atmospheric_disturbances_in_icing_encounters
    [5] JAN S, BERND K.Control based bifurcation analysis for experiments[J].Nonlinear Dynamics, 2008, 51(3):365-377. doi: 10.1007/s11071-007-9217-2
    [6] XIN Q, SHI Z K.Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack[J].Chinese Journal of Aeronautics, 2015, 28(1):250-259. doi: 10.1016/j.cja.2014.12.022
    [7] KHATRI A K, SINHA N K.Aircraft maneuver design using bifurcation analysis and nonlinear control techniques: AIAA-2011-924[R].Reston: AIAA, 2011. https://www.researchgate.net/publication/236612248_Aircraft_Maneuver_Design_Using_Bifurcation_Analysis_and_Sliding_Mode_Control_Techniques
    [8] ENGELBRECHT J, PAUCK S, PEDDLE I.Bifurcation analysis and simulation of stall and spin recovery for large transport aircraft: AIAA-2012-4801[R].Reston: AIAA, 2012. https://www.researchgate.net/publication/268557351_Bifurcation_Analysis_and_Simulation_of_Stall_and_Spin_Recovery_for_Large_Transport_Aircraft
    [9] HARRY G K, JEAN T D.Nonlinear analysis of aircraft loss of control[J].Journal of Guidance, Control, and Dynamics, 2013, 36(1):149-162. doi: 10.2514/1.56948
    [10] LARISSA K, BEHZAD S.Estimation of region of attraction for polynomial nonlinear systems:A numerical method[J].ISA Transactions, 2014, 53(1):25-32. doi: 10.1016/j.isatra.2013.08.005
    [11] TAN W, PACKARD A.Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming[J].IEEE Transactions on Automatic Control, 2008, 53(2):565-570. doi: 10.1109/TAC.2007.914221
    [12] WEEKLY K, TINKA A.Autonomous river navigation using the Hamilton-Jacobi framework for underactuated vehicles[J].IEEE Transactions on Robotics, 2011, 30(5):1250-1255. http://ieeexplore.ieee.org/document/6838996/
    [13] 郑无计, 李颖晖, 屈亮, 等.基于正规形法的结冰飞机着陆阶段非线性稳定域[J].航空学报, 2017, 38(2):100-110. http://d.old.wanfangdata.com.cn/Periodical/hkxb201702010

    ZHENG W J, LI Y H, QU L, et al.Nonlinear stability region of icing aircraft during landing phase based on normal form method[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):100-110(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201702010
    [14] ZHENG W J, LI Y H, QU L, et al.Dynamic envelope determination based on differential manifold theory[J].Journal of Aircraft, 2017, 54(5):2005-2009. doi: 10.2514/1.C034258
    [15] 袁国强, 李颖晖, 徐浩军, 等.积冰对飞机本体纵向非线性动力学稳定域的影响[J].西安交通大学学报, 2017, 51(9):153-158. http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201709022

    YUAN G Q, LI Y H, XU H J, et al.Effect of ice accretion on aircraft's longitudinal nonlinear dynamic stability region[J].Journal of Xi'an Jiaotong University, 2017, 51(9):153-158(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201709022
    [16] MILLER R, RIBBENS W.The effects of icing on the longitudinal dynamics of an icing research aircraft: AIAA-1999-0636[R].Reston: AIAA, 1999. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/76838/AIAA-1999-636-263.pdf;sequence=1
    [17] BRAGG M B, HUTCHISON T, MERRET J, et al.Effect of ice accretion on aircraft flight dynamic: AIAA-2000-0360[R].Reston: AIAA, 2000. http://sis.ae.illinois.edu/papers/AIAA2000-0360.pdf
    [18] POKHARIYAL D, BRAGG M B, HUTCHISON T, et al.Aircraft flight dynamics with simulated ice accretion: AIAA-2001-541[R].Reston: AIAA, 2001. doi: 10.2514/6.2001-541
    [19] 曹启蒙, 李颖晖, 徐浩军.考虑作动器速率饱和的人机闭环系统稳定域[J].北京航空航天大学学报, 2013, 39(2):1237-1253. http://bhxb.buaa.edu.cn/CN/abstract/abstract12533.shtml

    CAO Q M, LI Y H, XU H J.Stability region for closed-loop pilot-vehicle system with actuator rate saturation[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2):1237-1253(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12533.shtml
    [20] HINKE M O.Two-dimensional invariant manifolds in four-dimensional dynamical systems[J].Computers & Graphics, 2005, 29(2):289-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=073d65de58c24c2489062e1f5ddc9233
    [21] HALLER G, BERONVERA F.Geodesic theory of transport barriers in two-dimensional flows[J].Physica D Nonlinear Phenomena, 2012, 241(20):1680-1702. doi: 10.1016/j.physd.2012.06.012
  • 加载中
图(8)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  94
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-13
  • 录用日期:  2018-10-15
  • 网络出版日期:  2019-04-20

目录

    /

    返回文章
    返回
    常见问答